Selected Answers

Section 1.1

Solving Simple Equations
 (pages 7-9)

1. + and - are inverses. \times and \div are inverses.
2. $x-3=6$; It is the only equation that does not have $x=6$ as a solution.
3. $x=57$
4. $x=-5$
5. $p=21$
6. $x=9 \pi$
7. $d=\frac{1}{2}$
8. $n=-4.9$
9. a. $105=x+14 ; x=91$
b. no; Because $82+9=91$, you did not knock down the last pin with the second ball of the frame.
10. $n=-5$
11. $m=7.3 \pi$
12. $k=1 \frac{2}{3}$
13. $p=-2 \frac{1}{3}$
14. They should have added 1.5 to each side.

$$
\begin{aligned}
-1.5+k & =8.2 \\
k & =8.2+1.5 \\
k & =9.7
\end{aligned}
$$

33. $h=-7$
34. $q=3.2$
35. $6.5 x=42.25 ; \$ 6.50$ per hour
36. $420=\frac{7}{6} b, b=360 ; \$ 60$
37. greater than; Because a negative number divided by a negative number is a positive number.
38. 3 mg
39. 12 in .
40. $7 x-4$
41. $\frac{25}{4} g-\frac{2}{3}$

Section 1,2

Solving Multi-Step Equations

 (pages 14 and 15)1. $2+3 x=17 ; x=5$
2. $k=45 ; 45^{\circ}, 45^{\circ}, 90^{\circ}$
3. $b=90 ; 90^{\circ}, 135^{\circ}, 90^{\circ}, 90^{\circ}, 135^{\circ}$
4. $c=0.5$
5. $h=-9$
6. $x=-\frac{2}{9}$
7. 20 watches
8. $4(b+3)=24 ; 3$ in.
9. $\frac{2580+2920+x}{3}=3000 ; 3500$ people
10. <
11. $>$

Section 1,3

Solving Equations with Variables on Both Sides (pages 23-25)

1. no; When 3 is substituted for x, the left side simplifies to 4 and the right side simplifies to 3 .
2. $x=13.2$ in.
3. $x=7.5 \mathrm{in}$.
4. $k=-0.75$
5. $p=-48$
6. $n=-3.5$
7. $x=-4$
8. The 4 should have been added to the
9. $15+0.5 m=25+0.25 m ; 40 \mathrm{mi}$ right side.

$$
\begin{aligned}
3 x-4 & =2 x+1 \\
3 x-2 x-4 & =2 x+1-2 x \\
x-4 & =1 \\
x-4+4 & =1+4 \\
x & =5
\end{aligned}
$$

19. $x=\frac{1}{3}$
20. no solution
21. infinitely many solutions
22. $x=2$
23. no solution
24. infinitely many solutions
25. Sample answer: $8 x+2=8 x$; The number $8 x$ cannot be equal to 2 more than itself.
26. It's never the same. Your neighbor's total cost will always be $\$ 75$ more than your total cost.
27. no; $2 x+5.2$ can never equal $2 x+6.2$.
28. 7.5 units
29. Remember that the box is with priority mail and the envelope is with express mail.
30. 10 mL
31. a. 40 ft
b. no;
$2($ white area $)=$ black area
$2[5(6 x)]=4[6(x+1)]$
$60 x=24 x+24$
$36 x=24$

$$
x=\frac{2}{3}
$$

$$
5 x+4(x+1) \stackrel{?}{=} 40
$$

Length of hallway is $5\left(\frac{2}{3}\right)+4\left(\frac{2}{3}+1\right) \stackrel{?}{=} 40$

$$
10 \neq 40
$$

45. $15.75 \mathrm{~cm}^{3}$
46. C

Section 1,4

Rewriting Equations and Formulas (pages 30 and 31)

1. no; The equation only contains one variable.
2. a. $A=\frac{1}{2} b h$
b. $b=\frac{2 A}{h}$
c. $b=12 \mathrm{~mm}$
3. $y=4-\frac{1}{3} x$
4. $y=\frac{2}{3}-\frac{4}{9} x$
5. $y=3 x-1.5$
6. The y should have a negative sign in front of it.

$$
\begin{aligned}
2 x-y & =5 \\
-y & =-2 x+5 \\
y & =2 x-5
\end{aligned}
$$

13. a. $t=\frac{I}{P r}$
b. $t=3 \mathrm{yr}$
14. $m=\frac{e}{c^{2}}$
15. $\ell=\frac{A-\frac{1}{2} \pi w^{2}}{2 w}$
16. $w=6 g-40$
17. a. $F=32+\frac{9}{5}(K-273.15)$
18. $r^{3}=\frac{3 V}{4 \pi} ; r=4.5 \mathrm{in}$.
19. $-5 \frac{1}{3}$
b. $32^{\circ} \mathrm{F}$
c. liquid nitrogen
20. $1 \frac{1}{4}$

Section 2.1

Congruent Figures

(pages 46 and 47)

1. a. $\angle A$ and $\angle D, \angle B$ and $\angle E, \angle C$ and $\angle F$
b. Side $A B$ and Side $D E$, Side $B C$ and Side $E F$, Side $A C$ and Side $D F$
2. $\angle V$ does not belong. The other three angles are congruent to each other, but not to $\angle V$.
3. congruent
4. $\angle P$ and $\angle W, \angle Q$ and $\angle V, \angle R$ and $\angle Z, \angle S$ and $\angle Y, \angle T$ and $\angle X$;

Side $P Q$ and Side $W V$, Side $Q R$ and Side $V Z$, Side $R S$ and Side $Z Y$,
Side $S T$ and Side $Y X$, Side $T P$ and Side $X W$
9. not congruent; Corresponding side lengths are not congruent.
11. The corresponding angles are not congruent, so the two figures are not congruent.
13. What figures have you seen in this section that have at least one right angle?
15. a. true; Side $A B$ corresponds to Side $Y Z$.
b. true; $\angle A$ and $\angle X$ have the same measure.

c. false; $\angle A$ corresponds to $\angle Y$.
d. true; The measure of $\angle A$ is 90°, the measure of $\angle B$ is 140°, the measure of $\angle C$ is 40°, and the measure of $\angle D$ is 90°. So, the sum of the angle measures of $A B C D$ is $90^{\circ}+140^{\circ}+40^{\circ}+90^{\circ}=360^{\circ}$.

17 and 19.

Section 2.2

Translations

(pages 52 and 53)

1. A
2. no
3. $A^{\prime}(-3,0), B^{\prime}(0,-1)$, $C^{\prime}(1,-4), D^{\prime}(-3,-5)$
4. yes
5.

9. no
15.

17. 2 units left and 2 units up
19. 6 units right and 3 units down
21. a. 5 units right and 1 unit up
b. no; It would hit the island.
c. 4 units up and 4 units right
23. If you are doing more than 10 moves and have not moved the knight to 95 , you might want to start over.
25. no
27. yes

Section 2:3

Reflections (pages 58 and 59)

1. The third one because it is not a reflection.
2. yes
3. no
4. $M^{\prime}(-2,-1), N^{\prime}(0,-3), P^{\prime}(2,-2)$

5. $T^{\prime}(-4,-2), U^{\prime}(-4,2), V^{\prime}(-6,-2)$

6. x-axis
7. $R^{\prime}(3,-4), S^{\prime}(3,-1), T^{\prime}(1,-4)$
8. yes; Translations and reflections produce images that are congruent to the original figure.
9. If you are driving a vehicle and want to see who is following you, where would you look?
10. obtuse
11. right
12. B

Section 2.4

Rotations

(pages 65-67)

1. $(0,0) ;(1,-3)$
2. Quadrant IV
3. Quadrant II
4. reflection
5. translation
6. yes; 90° counterclockwise
7. $A^{\prime}(2,2), B^{\prime}(1,4), C^{\prime}(3,4), D^{\prime}(4,2)$
8. $J^{\prime}(0,-3), K^{\prime}(0,-5), L^{\prime}(-4,-3)$
9. $W^{\prime}(-2,6), X^{\prime}(-2,2), Y^{\prime}(-6,2), Z^{\prime}(-6,5)$

Section 2.4

19. It only needs to rotate 120° to produce an identical image.
20. It only needs to rotate 180° to produce an identical image.
21. $J^{\prime \prime}(4,4), K^{\prime \prime}(3,4), L^{\prime \prime}(1,1), M^{\prime \prime}(4,1)$
22. Sample answer: Rotate 180° about the origin and then rotate 90° clockwise about vertex $(-1,0)$; Rotate 90° counterclockwise about the origin and then translate 1 unit left and 1 unit down.
23. Use Guess, Check, and Revise to solve this problem.
24. $(2,4),(4,1),(1,1)$
25. yes

26. no

Section 2.5

Similar Figures

(pages 74 and 75)

1. They are congruent.
2. Yes, because the angles are congruent and the side lengths are proportional.
3. not similar; Corresponding side lengths are not proportional.
4.

A and B; Corresponding side lengths are proportional and corresponding angles are congruent.
9. $6 \frac{2}{3}$
11. 14
13. 30 in .
15. What types of quadrilaterals can have the given angle measures?
17. 3 times
19. a. yes
b. yes; It represents the fact that the sides are proportional because you can split the isosceles triangles into smaller
 right triangles that will be similar.
21. $\frac{16}{81}$
23. $\frac{49}{16}$
25. C

Section 2.6

Perimeters and Areas of Similar Figures (pages 80 and 81)

1. The ratio of the perimeters is equal to the ratio of the corresponding side lengths.
2. Because the ratio of the corresponding side lengths is $\frac{1}{2}$, the ratio of the areas is equal to $\left(\frac{1}{2}\right)^{2}$. To find the area, solve the proportion $\frac{30}{x}=\frac{1}{4}$ to get $x=120$ square inches.
3. $\frac{5}{8} ; \frac{25}{64}$
4. $\frac{14}{9} ; \frac{196}{81}$
5. The area is 9 times larger.
6. 25.6
7. 39 in.; 93.5 in. 2
8. 108 yd
9. a. 400 times greater; The ratio of the corresponding lengths is $\frac{120 \mathrm{in} .}{6 \mathrm{in} .}=\frac{20}{1}$. So, the ratio of the areas is $\left(\frac{20}{1}\right)^{2}=\frac{400}{1}$.
b. $1250 \mathrm{ft}^{2}$
10. 15 m
11. $x=-2$
12. $n=-4$

Section 2.7

Dilations

(pages 87-89)
5.

The triangles are similar.
13.

enlargement
15.

reduction
17.

reduction
19. Each coordinate was multiplied by 2 instead of divided by 2 . The coordinates should be $A^{\prime}(1,2.5), B^{\prime}(1,0)$, and $C^{\prime}(2,0)$.

Section 2.7

Dilations (continued)
21. reduction; $\frac{1}{4}$
23. $A^{\prime \prime}(10,6), B^{\prime \prime}(4,6), C^{\prime \prime}(4,2), D^{\prime \prime}(10,2)$
25. $J^{\prime \prime}(3,-3), K^{\prime \prime}(12,-9), L^{\prime \prime}(3,-15)$
27. Sample answer: Rotate 90° counterclockwise about the origin and then dilate with respect to the origin using a scale factor of 2
29. Exercise 27: yes; Exercise 28: no; Explanations will vary based on sequences chosen in Exercises 27 and 28.
31. a. enlargement
b. center of dilation
c. $\frac{4}{3}$
d. The shadow on the wall becomes larger. The scale factor will become larger.
33. The transformations are a dilation using a scale factor of 2 and then a translation of 4 units right and 3 units down; similar; A dilation produces a similar figure and a translation produces a congruent figure, so the final image is similar.
35. The transformations are a dilation using a scale factor of $\frac{1}{3}$ and then a reflection in the x-axis; similar; A dilation produces a similar figure and a reflection produces a congruent figure, so the final image is similar.
37. $A^{\prime}(-2,3), B^{\prime}(6,3), C^{\prime}(12,-7), D^{\prime}(-2,-7)$; Methods will vary.
39. supplementary; $x=16$
41. B

Section 3.1]
 Parallel Lines and Transversals (pages 107-109)

1. Sample answer:

2. m and n
3. 8
4. $\angle 1=107^{\circ}, \angle 2=73^{\circ}$
5. 60°; Corresponding angles are congruent.
6. $\angle 5=49^{\circ}, \angle 6=131^{\circ}$
7. Sample answer: rotate 180° and translate down
8. $\angle 6=61^{\circ} ; \angle 6$ and the given angle are vertical angles.
$\angle 5=119^{\circ}$ and $\angle 7=119^{\circ} ; \angle 5$ and $\angle 7$ are supplementary to the given angle.
$\angle 1=61^{\circ} ; \angle 1$ and the given angle are corresponding angles.
$\angle 3=61^{\circ} ; \angle 1$ and $\angle 3$ are vertical angles.
$\angle 2=119^{\circ}$ and $\angle 4=119^{\circ} ; \angle 2$ and $\angle 4$ are supplementary to $\angle 1$.
9. $\angle 2=90^{\circ} ; \angle 2$ and the given angle are vertical angles.
$\angle 1=90^{\circ}$ and $\angle 3=90^{\circ} ; \angle 1$ and $\angle 3$ are supplementary to the given angle.
$\angle 4=90^{\circ} ; \angle 4$ and the given angle are corresponding angles.
$\angle 6=90^{\circ} ; \angle 4$ and $\angle 6$ are vertical angles.
$\angle 5=90^{\circ}$ and $\angle 7=90^{\circ} ; \angle 5$ and $\angle 7$ are supplementary to $\angle 4$.
10. 132°; Sample answer: $\angle 2$ and $\angle 4$ are alternate interior angles and $\angle 4$ and $\angle 3$ are supplementary.
11. 120°; Sample answer: $\angle 6$ and $\angle 8$ are alternate exterior angles.
12. 61.3°; Sample answer: $\angle 3$ and $\angle 1$ are alternate interior angles and $\angle 1$ and $\angle 2$ are supplementary.
13. They are all right angles because perpendicular lines form 90° angles.
14. 130
15. a. no; They look like they are spreading apart.
b. Check students' work.
16. 13
17. 51
18. B

Section 3.2
 Angles of Triangles (pages 114 and 115)

1. Subtract the sum of the given measures from 180°.
2. $115^{\circ}, 120^{\circ}, 125^{\circ}$
3. $40^{\circ}, 65^{\circ}, 75^{\circ}$
4. $25^{\circ}, 45^{\circ}, 110^{\circ}$
5. $48^{\circ}, 59^{\circ}, 73^{\circ}$
6. 45
7. 140°
8. The measure of the exterior angle is equal to the sum of the measures of the two nonadjacent interior angles. The sum of all three angles is not 180°;

$$
\begin{aligned}
(2 x-12) & =x+30 \\
x & =42
\end{aligned}
$$

The exterior angle is $(2(42)-12)^{\circ}=72^{\circ}$.
17. 126°
19. sometimes; The sum of the angle measures must equal 180°.
21. never; If a triangle had more than one vertex with an acute exterior angle, then it would have to have more than one obtuse interior angle which is impossible.
23. $x=-4$

Section 3,3

Angles of Polygons

(pages 123-125)

1. Sample answer:

2. What is the measure of an interior angle of a regular pentagon?; $108^{\circ} ; 540^{\circ}$
3. 1260°
4. 360°
5. 1260°

Section 3.3

Angles of Polygons (continued) (pages 123-125)

11. no; The interior angle measures given add up to 535°, but the sum of the interior angle measures of a pentagon is 540°.
12. $90^{\circ}, 135^{\circ}, 135^{\circ}, 135^{\circ}, 135^{\circ}, 90^{\circ}$
13. 140°
14. 140°
15. The sum of the interior angle measures should have been divided by the number of angles, $20.3240^{\circ} \div 20=162^{\circ}$; The measure of each interior angle is 162°.
16. 24 sides
17. $75^{\circ}, 93^{\circ}, 85^{\circ}, 107^{\circ}$
18. 60°; The sum of the interior angle measures of a hexagon is 720°. Because it is regular, each angle has the same measure. So, each interior angle is $720^{\circ} \div 6=120^{\circ}$ and each exterior angle is 60°.
19. $120^{\circ}, 120^{\circ}, 120^{\circ}$
20. a. Sample answer:

21. interior: 135°; exterior: 45°
b. Sample answer:
square, regular hexagon
22. 120°
c. Sample answer:

23. 2
24. 6

Section 3.4 Using Similar Triangles (pages 130 and 131)

1. Write a proportion that uses the missing measurement because the ratios of corresponding side lengths are equal.
2. Sample answer: Two of the angles are congruent, so they have the same sum. When you subtract this from 180°, you will get the same third angle.
3. Student should draw a triangle with the same angle measures as the ones given in the textbook.
If the student's triangle is larger than the one given, then the ratio of the corresponding side lengths, $\frac{\text { student's triangle length }}{\text { book's triangle length }}$, should be greater than 1 . If the student's triangle is smaller than the one given, then the ratio of the corresponding side lengths, $\frac{\text { student's triangle length }}{\text { book's triangle length }}$, should be less than 1.
4. no; The triangles do not have two pairs of congruent angles.
5. yes; The triangles have the same angle measures, $81^{\circ}, 51^{\circ}$, and 48°.
6. yes; The triangles have two pairs of congruent angles.
7. Think of the different ways that you can show that two triangles are similar.
8. 30 ft
9. maybe; They are similar when both have measures of $30^{\circ}, 60^{\circ}, 90^{\circ}$ or both have measures of $45^{\circ}, 45^{\circ}, 90^{\circ}$. They are not similar when one has measures of $30^{\circ}, 60^{\circ}, 90^{\circ}$ and the other has measures of $45^{\circ}, 45^{\circ}, 90^{\circ}$.

10. $y=5 x+3$
11. $y=8 x-4$

Section 4.1

Graphing Linear Equations

 (pages 146 and 147)
1. a line

3. Sample answer:

x	0	1
$y=3 x-1$	-1	2

5.

7.

9.

11.

13.

15.

17. The equation $x=4$ is graphed, $\operatorname{not} y=4$.

21. $y=-\frac{5}{2} x+2$

19. a.

23. $y=-2 x+3$

Section 4.1

Graphing Linear Equations (continued)

 (pages 146 and 147)25. a. Sample answer:

Yes; The graph of the equation is a line.
27. Begin this exercise by listing all of the given information.
29. $(-6,6)$
31. $(-4,-3)$

Section 4.2

Slope of a Line (pages 153-155)

1. a. B and C
b. A
c. no; None of the lines are vertical.
2.

7. $\frac{3}{4}$
9. $-\frac{3}{5}$
11. 0
3. The line is horizontal.

The lines are parallel.
19. The denominator should be $2-4$.
21. 4
$m=-1$
23. $-\frac{3}{4}$
25. $\frac{1}{3}$
27. $k=11$
29. $k=-5$
31. a. $\frac{3}{40}$
b. The cost increases by $\$ 3$ for every 40 miles you drive, or the cost increases by $\$ 0.075$ for every mile you drive.
33. yes; The slopes are the same between the points.
35. When you switch the coordinates, the differences in the numerator and denominator are the opposite of the numbers when using the slope formula. You still get the same slope.
37. $b=25$
39. $x=7.5$

Extension 4.2

Slopes of Parallel and Perpendicular Lines

1. blue and red; They both have a slope of -3 .
2. yes; Both lines are horizontal and have a slope of 0 .
3. yes; Both lines are vertical and have an undefined slope.
4. blue and green; The blue line has a slope of 6 . The green line has a slope of $-\frac{1}{6}$. The product of their slopes is $6 \cdot\left(-\frac{1}{6}\right)=-1$.
5. yes; The line $x=-2$ is vertical. The line $y=8$ is horizontal. A vertical line is perpendicular to a horizontal line.
6. yes; The line $x=0$ is vertical. The line $y=0$ is horizontal. A vertical line is perpendicular to a horizontal line.

Section 4,3

Graphing Proportional Relationships (pages 162 and 163)

1. $(0,0)$
2. no; Sample answer: The graph of the equation does not pass through the origin.
3. yes; $y=\frac{1}{3} x$; Sample answer: The rate of change in the table is constant.
4.

Each ticket costs $\$ 5$.
9. a. the car; Sample answer: The equation for the car is $y=25 x$. Because 25 is greater than 18, the car gets better gas mileage.
b. 56 miles
11. Consider the direct variation equation and that the graph passes through the origin.

13. a. yes; The equation is $d=6 t$, which represents a proportional relationship.

b. yes; The equation is $d=50 r$, which represents a proportional relationship.

c. no; The equation is $t=\frac{300}{r}$, which does not represent a proportional relationship.

d. part c; It is called inverse variation because when the rate increases, the time decreases, and when the rate decreases, the time increases.
15.

17. B

Section 4.4

Graphing Linear Equations in Slope-Intercept Form (pages 170 and 171)

1. Find the x-coordinate of the point where the graph crosses the x-axis.
2. Sample answer: The amount of gasoline y (in gallons) left in your tank after you travel x miles is $y=-\frac{1}{20} x+20$. The slope of $-\frac{1}{20}$ means the car uses 1 gallon of gas for every 20 miles driven. The y-intercept of 20 means there is originally 20 gallons of gas in the tank.
3. A; slope: $\frac{1}{3} ; y$-intercept: -2
4. slope: $4 ; y$-intercept: -5
5. slope: $-\frac{4}{5} ; y$-intercept: -2
6. slope: $-2 ; y$-intercept: 3.5
7. a.

8. slope: $\frac{4}{3} ; y$-intercept: -1
9. slope: 1.5; y-intercept: 11
b. The x-intercept of 300 means the skydiver lands on the ground after 300 seconds. The slope of -10 means that the skydiver falls to the ground at a rate of 10 feet per second.
10.

x-intercept: $-\frac{5}{7}$
23.

x-intercept: $\frac{20}{3}$
25. a. $y=2 x+4$ and $y=2 x-3$ are parallel because the slope of each line is 2 ;
$y=-3 x-2$ and $y=-3 x+5$ are parallel because the slope of each line is -3 .
b. $y=2 x+4$ and $y=-\frac{1}{2} x+2$ are perpendicular because the product of their slopes is -1 ;
$y=2 x-3$ and $y=-\frac{1}{2} x+2$ are perpendicular because the product of their slopes is -1 ;
$y=-\frac{1}{3} x-1$ and $y=3 x+3$ are perpendicular because the product of their slopes is -1 .
27. $y=2 x+3$
29. $y=\frac{2}{3} x-2$
31. B

Section 4.5

Graphing Linear Equations in Standard Form (pages 176 and 177)

1. no; The equation is in slope-intercept form.
2. $x=$ pounds of peaches
$y=$ pounds of apples $y=-\frac{4}{3} x+10$

3. $y=-2 x+17$
4.

7. $y=\frac{1}{2} x+10$
11. B
13. C

Section 4.5

15. a.

b. $\$ 390$

Graphing Linear Equations in Standard Form (continued) (pages 176 and 177)

17.

19. x-intercept: 9 y-intercept: 7

21. a. $9.45 x+7.65 y=160.65$
b.

23. a. $y=40 x+70$
b. x-intercept: $-\frac{7}{4}$; no;

You cannot have a negative time.
c.

25. $\frac{1}{2}$

Section 4.6

Writing Equations in Slope-Intercept Form (pages 182 and 183)

1. Sample answer: Find the ratio of the rise to the run between the intercepts.
2. $y=3 x+2 ; y=3 x-10 ; y=5 ; y=-1$
3. $y=x+4$
4. $y=\frac{1}{4} x+1$
5. $y=\frac{1}{3} x-3$
6. The x-intercept was used instead of the y-intercept. $y=\frac{1}{2} x-2$
7. $y=5$
8. $y=-2$
9. a-b.

$(0,60)$ represents the speed of the automobile before braking. (6,0) represents the amount of time it takes to stop. The line represents the speed y of the automobile after x seconds of braking.
c. $y=-10 x+60$
10. Be sure to check that your rate of growth will not lead to a 0 -year-old tree with a negative height.

21 and 23.

Section 4.7

Writing Equations in Point-Slope Form (pages 188 and 189)

1. $m=-2 ;(-1,3)$
2. $y-0=\frac{1}{2}(x+2)$
3. $y+1=-3(x-3)$
4. $y-8=\frac{3}{4}(x-4)$
5. $y+5=-\frac{1}{7}(x-7)$
6. $y+4=-2(x+1)$
7. $y=2 x$
8. $y=\frac{1}{4} x$
9. $y=x+1$
10. a. $V=-4000 x+30,000$
b. $\$ 30,000$
11. The rate of change is 0.25 degree per chirp.
12. a. $y=14 x-108.5$
b. 4 meters

13.

Section 5.1

Solving Systems of Linear Equations by Graphing (pages 206 and 207)

1. yes; The equations are linear and in the same variables.
2. Check whether $(3,4)$ is a solution of each equation.
3. $(4,176)$
4. $\mathrm{B} ;(6,7)$
5. $\mathrm{C} ;(3,-1)$
6. $(-5,1)$
7. $(12,15)$
8. $(8,1)$
9. $(5,1.5)$
10. $(-6,2)$
11. no; Two lines cannot intersect in exactly two points.
12. Make a table to compare your distance to your friend's distance.
13. $c=8$
14. $x=11$

Section 5.2

Solving Systems of Linear Equations by Substitution (pages 212 and 213)

1. Step 1 : Solve one of the equations for one of the variables.

Step 2: Substitute the expression from Step 1 into the other equation and solve.
Step 3: Substitute the value from Step 2 into one of the original equations and solve.
3. sometimes; A solution obtained by graphing may not be exact.
5. Sample answer: $x+2 y=6$
7. $4 x-y=3$; The coefficient of y is -1 .

$$
x-y=3
$$

9. $2 x+10 y=14$; Dividing by 2 to solve for x yields integers.
10. $(6,17)$
11. $(4,1)$
12. $\left(\frac{1}{4}, 6\right)$
13. a. $x=2 y$
14. $(-2,4)$
$64 x+132 y=1040$
b. adult tickets: $\$ 8$; student tickets: $\$ 4$
15. The expression for y was substituted back into the same equation; solution: $(2,1)$
16. 30 cats, 35 dogs
17. Make a diagram to help visualize the problem.
18. $2 x-5 y=-8$
19. B

Section 5.3
 Solving Systems of Linear Equations by Elimination (pages 221-223)

1. Step 1: Multiply, if necessary, one or both equations by a constant so at least one pair of like terms has the same or opposite coefficients.
Step 2: Add or subtract the equations to eliminate one of the variables.
Step 3: Solve the resulting equation for the remaining variable.
Step 4: Substitute the value from Step 3 into one of the original equations and solve.
2. $2 x+3 y=11$
$3 x-2 y=10$;
You have to use multiplication to solve the system by elimination.
3. $(6,2)$
4. $(2,1)$
5. $(1,-3)$
6. $(3,2)$
7. The student added y-terms, but subtracted x-terms and constants; solution $(1,2)$
8. a. $2 x+y=10$
9. $(5,-1)$
10. $(-2,-1)$
11. $(4,3)$
$2 x+3 y=22$
b. 6 minutes
12. a. ± 4
13. yes; The lines are perpendicular.
b. ± 7
14. a. $23 x+10 y=86$

$$
28 x+5 y=76
$$

b. Multiple choice: 2 points each Short response: 4 points each
29. $\$ 95$
33. $(-1,2,1)$
35. yes
31. 5 grams of 90% gold alloy, 3 grams of 50% gold alloy
37. D

Section 5.4

Solving Special Systems of Linear Equations (pages 228 and 229)

1. The graph of a system with no solution is two parallel lines, and the graph of a system with infinitely many solutions is one line.
2. infinitely many solutions; all points on the line $y=4 x+\frac{1}{3}$
3. no solution; The lines have the same slope and different y-intercepts.
4. infinitely many solutions; The lines are identical.
5. $(-1,-2)$
6. infinitely many solutions; all points on the line $y=-\frac{1}{6} x+5$
7. $(-2.4,-3.5)$
8. no; because they are running at the same speed and your pig had a head start
9. When the slopes are different, there is one solution. When the slopes are the same, there is no solution if the y-intercepts are different and infinitely many solutions if the y-intercepts are the same.
10. $y=0.99 x+10$
$y=0.99 x$
no; Because you paid $\$ 10$ before buying the same number of songs at the same price, you spend $\$ 10$ more.
11. Try using the Guess, Test, and Revise method to help you answer this question.
12. $y=3 x$
13. $y=-\frac{1}{2} x+2$

Extension 5.4

Solving Linear Equations by Graphing

 (pages 230 and 231)1. $x=\frac{1}{2}$
2. no solution
3. Sample answer: $6 x-3=6 x$; Subtract 3 from the right side.
4. $x=\frac{21}{2}$
5. 6 mo
6. $x=2$

Section 6.1

Relations and Functions

(pages 246 and 247)

1. the first number; the second number
2. As each input increases by 1 , the output increases by 4 .
Input Output

1	$\longrightarrow 4$
2	
3	
4	
4	
5	
6	

7. $(1,8),(3,8),(3,4),(5,6),(7,2)$
8. As each input increases by 1 , the output increases by 5 .
Input Output

1	-3
2	2
3	7
4	12
5	17
6	22

9. no
10. yes
11. Input Output

As each input increases by 2 , the output increases by 2 .
15. Input Output

As each input increases by 3 , the output decreases by 10 .
17. a. Input Output

1	$\longrightarrow 10$
2	
3	
4	
4	24

b. yes; Each input has exactly one output.
c. The pattern is that for each input increase of 1 , the output increases by $\$ 2$ less than the previous increase. For each additional movie you buy, your cost per movie decreases by $\$ 1$.
19. y-axis

Section 6.2

1. input variable: x; output variable: y
2. x-axis

Representations of Functions

 (pages 253-255)5. $y=x+7$
6. $y=\frac{1}{2} x$
7. What output is twice the sum of the input 3 and 4 ?; $2(3+4)=14 ; 2(3)+4=10$
8. $y=x-3$
9. $y=6 x$
10. 8
11.

15. -17
21.

17. 54
23.

25. The order of the x - and y-coordinates is reversed in each coordinate pair.
27. B
29. A

31. -4
33. a. $P=3.50 b-84$
b. independent variable: b; dependent variable: P; The profit depends on the number of bracelets sold.
c. 24 bracelets
35. a. $G=35+10 h$
b. $S=25 h$
c. Snake Tours; For 2 hours, Gator Tours cost $\$ 55$ and Snake Tours cost $\$ 50$.
37. Sample answer:

Side Length	1	2	3	4	5
Perimeter	4	8	12	16	20

Side Length	1	2	3	4	5
Area	1	4	9	16	25

Sample answer: The perimeter function appears to form a line, and the area function appears to form a curve. When the side length is less than 4, the perimeter function is greater. When the side length is greater than 4 , the area function is greater. When the side length is 4 , the two functions are equal.
39. 1
41. $\frac{1}{3}$

Section 6,3

Linear Functions

(pages 261-263)

1. yes; The graph of $y=m x$ is a nonvertical line, so it is a linear function.
2. $y=\pi x ; x$ is the diameter; y is the circumference.
3. $y=-\frac{1}{4} x$

4. $y=\frac{4}{3} x+2$
5. $y=3$
6. a. independent variable: x; dependent variable: y
b. $y=3 x$; It costs $\$ 3$ to rent one movie.
c.

d. $\$ 9$

Section 6.3

Linear Functions (continued)

(pages 261-263)
13. a. $y=-0.2 x+1$
b. The slope indicates that the power decreases by 20% per hour. The x-intercept indicates that the battery lasts 5 hours. The y-intercept indicates that the battery power is at 100% when you turn on the laptop.
c. 1.25 hours
15. a. hiking
17. yes; A horizontal line is a nonvertical line.
b. 67.5 calories
19. a.

Temperature (${ }^{\circ} \mathrm{F}$), \boldsymbol{t}	94	95	96	97	98
Heat Index $\left({ }^{\circ} \mathrm{F}\right), \boldsymbol{H}$	122	126	130	134	138

b. independent variable: t; dependent variable: H
c. $H=4 t-254$
d. $146^{\circ} \mathrm{F}$
21. $w=1.5$
23. C

Section 6.4

 Comparing Linear and Nonlinear Functions (pages 270 and 271)1. A linear function has a constant rate of change. A nonlinear function does not have a constant rate of change.
2.

7. linear; The graph is a line.
5.

9. linear; As x increases by $6, y$ increases by 4 .
11. nonlinear; As x increases by $1, V$ increases by different amounts.
13. linear; You can rewrite the equation in slope-intercept form.
15. nonlinear; As x decreases by $65, y$ increases by different amounts.
17. a. nonlinear; When graphing the points, they do not lie on a line.
b. Tree B; After ten years, the height of Tree A is 20 feet and the height of Tree B is at least 23 feet.
19. a.

enlargement
21. C

Section 6.5

1. F

Analyzing and Sketching Graphs (pages 276 and 277)

3. A
4. D
5. The volume of the balloon increases at a constant rate, then stays constant, then increases at a constant rate, then stays constant, and then increases at a constant rate.
6. Horsepower increases at an increasing rate and then increases at a decreasing rate.
7. The hair length increases at a constant rate, then decreases instantly, then increases at a constant rate, then decreases instantly, and then increases at a constant rate.
8. a. The usage decreases at an increasing rate.
b. The usage decreases at a decreasing rate.
9.

17.

19. Think about the real-life meanings of the words "surplus" and "shortage."
21. $(2,-1)$
23. C

Section 7,11
 Finding Square Roots
 (pages 292 and 293)

1. no; There is no integer whose square is 26 .
2. $\sqrt{256}$ represents the positive square root because there is not $\mathrm{a}-$ or $\mathrm{a} \pm$ in front.
3. $s=1.3 \mathrm{~km}$
4. 3 and -3
5. 2 and -2
6. 25
7. $\frac{1}{31}$ and $-\frac{1}{31}$
8. 2.2 and -2.2
9. -19
10. The positive and negative square roots should have been given.
$\pm \sqrt{\frac{1}{4}}=\frac{1}{2}$ and $-\frac{1}{2}$
11. -116
12. 9
13. 25
14. 40
15. because a negative radius does not make sense
16. =
17. 9 ft
18. $8 \mathrm{~m} / \mathrm{sec}$
19. 2.5 ft
20. $y=3 x-2$
21. $y=\frac{3}{5} x+1$

Section 7.2

1. no; There is no integer that equals 25 when cubed.
2. 50 in .
3. 0.4 m
4. -5
5. 12
6. $\frac{7}{4}$
7. $3 \frac{5}{8}$
8. $\frac{7}{12}$
9. 74
10. -276
11. 30 cm
12. >
13. <
14. $-1,0,1$
15. The side length of the square base is 18 inches and the height of the pyramid is 9 inches.
16. $x=3$
17. $x=4$
18. 289
19. 49

Section 7,3

The Pythagorean Theorem

 (pages 304 and 305)1. The hypotenuse is the longest side and the legs are the other two sides.
2. 29 km
3. 9 in .
4. 24 cm
5. The length of the hypotenuse was substituted for the wrong variable.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
7^{2}+b^{2} & =25^{2} \\
49+b^{2} & =625 \\
b^{2} & =576 \\
b & =24
\end{aligned}
$$

11. 16 cm
12. Use a right triangle to find the distance.
13. Sample answer: length $=20 \mathrm{ft}$, width $=48 \mathrm{ft}$, height $=10 \mathrm{ft}$;
$B C=52 \mathrm{ft}, A B=\sqrt{2804} \mathrm{ft}$

14. a. Sample answer:
b. 45 ft

15. 6 and -6
16. 13
17. C

Section 7,4

Approximating Square Roots

(pages 313-315)

1. A rational number can be written as the ratio of two integers. An irrational number cannot be written as the ratio of two integers.
2. all rational and irrational numbers; Sample answer: $-2, \frac{1}{8}, \sqrt{7}$
3. yes
4. no
5. whole, integer, rational
6. irrational
7. rational
8. irrational
9. 144 is a perfect square. So, $\sqrt{144}$ is rational.
10. a. If the last digit is 0 , it is a whole number. Otherwise, it is a natural number.
b. irrational number
c. irrational number
11. a. 26
b. 26.2
12. a. -10
b. -10.2
13. a. -13
b. -12.9
14. $\sqrt{15} ; \sqrt{15}$ is positive and -3.5 is negative.
15. $\frac{2}{3} ; \frac{2}{3}$ is to the right of $\sqrt{\frac{16}{81}}$.
16. $-\sqrt{182} ;-\sqrt{182}$ is to the right of $-\sqrt{192}$.
17. true
18. 8.1 ft
19. 8.5 ft
20. 20.6 in.
21. Create a table of integers whose cubes are close to the radicand. Determine which two integers the cube root is between. Then create another table of numbers between those two integers whose cubes are close to the radicand. Determine which cube is closest to the radicand; 2.4
22. Sample answer: $a=82, b=97$
23. 1.1
24. $30.1 \mathrm{~m} / \mathrm{sec}$
25. Falling objects do not fall at a linear rate. Their speed increases with each second they are falling.
26. 40 m
27. 9 cm

Extension 7.4

1. $\frac{1}{9}$

Repeating Decimals

 (pages 316 and 317)3. $-1 \frac{2}{9}$
4. Because the solution does not change when adding/subtracting two equivalent equations; Multiply by 10 so that when you subtract the original equation, the repeating part is removed.
5. $-\frac{13}{30}$
6. $\frac{3}{11}$
7. Pattern: Digits that repeat are in the numerator and 99 is in the denominator; Use 9 as the integer part, 4 as the numerator, and 99 as the denominator of the fractional part.

Section 7.5

Using the Pythagorean Theorem (pages 322 and 323)

1. the Pythagorean Theorem and the distance formula
2. If a^{2} is odd, then a is an odd number; true when a is an integer; A product of two integers is odd only when each integer is odd.
3. yes
4. no
5. yes
6. $\sqrt{52}$
7. $\sqrt{29}$
8. $\sqrt{85}$
9. The squared quantities under the radical should be added not subtracted; $\sqrt{136}$
10. yes
11. yes
12. no; The measures of the side lengths are $\sqrt{5000}, \sqrt{3700}$, and $\sqrt{8500}$ and $(\sqrt{5000})^{2}+(\sqrt{3700})^{2} \neq(\sqrt{8500})^{2}$.
13. Notice that the picture is not drawn to scale. Use right triangles.
14. mean: 13; median: 12.5; mode: 12
15. mean: 58; median: 59; mode: 59

Section 8.1

Volumes of Cylinders

 (pages 338 and 339)1. How much does it take to cover the cylinder?; $170 \pi \approx 534.1 \mathrm{~cm}^{2} ; 300 \pi \approx 942.5 \mathrm{~cm}^{3}$
2. $486 \pi \approx 1526.8 \mathrm{ft}^{3}$
3. $245 \pi \approx 769.7 \mathrm{ft}^{3}$
4. $90 \pi \approx 282.7 \mathrm{~mm}^{3}$
5. $252 \pi \approx 791.7$ in. 3
6. $256 \pi \approx 804.2 \mathrm{~cm}^{3}$
7. $\frac{125}{8 \pi} \approx 5 \mathrm{ft}$
8. $\sqrt{\frac{150,000}{19 \pi}} \approx 50 \mathrm{~cm}$
9. Divide the volume of one round bale by the volume of one square bale.
10. $8325-729 \pi \approx 6035 \mathrm{~m}^{3}$
11. yes
12. no

Section 8.2

Volumes of Cones
 (pages 344 and 345)

1. The height of a cone is the perpendicular distance from the base to the vertex.
2. Divide by 3 .
3. $9 \pi \approx 28.3 \mathrm{~m}^{3}$
4. $\frac{2 \pi}{3} \approx 2.1 \mathrm{ft}^{3}$
5. $\frac{147 \pi}{4} \approx 115.5 \mathrm{yd}^{3}$
6. $\frac{125 \pi}{6} \approx 65.4$ in. 3
7. The diameter was used instead of the radius;

$$
V=\frac{1}{3}(\pi)(1)^{2}(3)=\pi \mathrm{m}^{3}
$$

15. 1.5 ft
16. $2 \sqrt{\frac{10.8}{4.2 \pi}} \approx 1.8 \mathrm{in}$.
17. 24.1 min
18. $3 y$
19. $A^{\prime}(-1,1), B^{\prime}(-3,4), C^{\prime}(-1,4)$
20. D

Section 8.3

Volumes of Spheres

1. A hemisphere is one-half of a sphere.
2. $\frac{500 \pi}{3} \approx 523.6 \mathrm{in}^{3}$
3. $972 \pi \approx 3053.6 \mathrm{~mm}^{3}$
4. $36 \pi \approx 113.1 \mathrm{~cm}^{3}$
5. 9 mm
6. 4.5 ft
7. $256 \pi+128 \pi=384 \pi \approx 1206.4 \mathrm{ft}^{3}$
8. 5400 in. $^{2} ; 27,000$ in. 3
9. enlargement; 2
10. $r=\frac{3}{4} h$
11. A

Section 8.4

Surface Areas and Volumes of Similar Solids

 (pages 359-361)1. Similar solids are solids of the same type that have proportional corresponding linear measures.
2. a. $\frac{9}{4}$; because $\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$
b. $\frac{27}{8}$; because $\left(\frac{3}{2}\right)^{3}=\frac{27}{8}$
3. no
4. 1012.5 in. 2
5. $673.75 \mathrm{~cm}^{2}$
6. $13,564.8 \mathrm{ft}^{3}$
7. a. 9483 pounds; The ratio of the height of the original statue to the height of the small statue is $8.4: 1$. So, the ratio of the weights, or volumes is $\left(\frac{8.4}{1}\right)^{3}$.
b. $221,184 \mathrm{lb}$
8. a. yes; Because all circles are similar, the slant height and the circumference of the base of the cones are proportional.
b. no; because the ratio of the volumes of similar solids is equal to the cube of the ratio of their corresponding linear measures
9.

$J^{\prime}(-3,0), K^{\prime}(-4,-3), L^{\prime}(-1,-4)$

Section 9.1

Scatter Plots

 (pages 376 and 377)1. They must be ordered pairs so there are equal amounts of x - and y-values.
2. no relationship; A student's shoe size is not related to his or her IQ.
3. nonlinear relationship; On each successive bounce, the ball rebounds to a height less than its previous bounce.
4. a. $(22,152),(40,94),(28,134),(35,110),(46,81)$

b. As the average price of jeans increases, the number of pairs of jeans sold decreases.
5. a. 3.5 h
b. $\$ 85$
c. There is a positive relationship between hours worked and earnings.
6. nonlinear relationship; no outliers, gaps, or clusters
7. positive relationship
8. Sample answer: bank account balance during a shopping spree
9. Could there be another event that is causing the sales of both items to increase?
10. 8
11. B

Section 9.2

Lines of Fit

(pages 382 and 383)

1. You can estimate and predict values.
2. -0.98 , because it is closer to -1 than 0.91 is to $1 .(|-0.98|>|0.91|)$
3. a.

b. Sample answer: $y=-0.5 x+60$
c. Sample answer: The slope is -0.5 and the y-intercept is 60 . So, you could predict that 60 hot chocolates are sold when the temperature is $0^{\circ} \mathrm{F}$, and the sales decrease by about 1 hot chocolate for every $2^{\circ} \mathrm{F}$ increase in temperature.
d. 50 hot chocolates
4. no; There is no line that lies close to most of the points.
5. $y=0.9 x+4 ; r \approx 0.999$; The relationship between x and y is a strong positive correlation and the equation closely models the data; 4 in.
6. a. $y=48 x+11 ; r \approx 0.98$; The relationship between x and y is a strong positive correlation and the equation closely models the data.
b. 251 ft
c. The height of a hit baseball is not linear. The best fit line from part (a) only models a small part of the data.
7. $-2 \frac{7}{9}$
8. $\frac{9}{11}$

Section 9,3

Two-Way Tables

(pages 390 and 391)

1. The joint frequencies are the entries in the two-way table that differentiate the two categories of data collected. The marginal frequencies are the sums of the rows and columns of the two-way table.
2. total of females surveyed: 73;
3. 51
total of males surveyed: 59
4. 71 students are juniors.

93 students are attending the school play.
75 students are seniors. 53 students are not attending the school play.
9. a. $19 ; 42$
b. 72 6th-graders were surveyed. 112 students chose grades. 74 7th-graders were surveyed. 40 students chose popularity. 65 8th-graders were surveyed. 59 students chose sports.
c. about 8.5%
11. a.

		Eye Color				
		Green	Blue	Brown	Total	
	Male	5	16	27	48	
	Female	3	19	18	40	
			Total	8	35	45
88						

b. 48 males were surveyed. 40 females were surveyed. 8 students have green eyes. 35 students have blue eyes. 45 students have brown eyes.

		Eye Color		
		Green	Blue	Brown
	Male	63%	46%	60%
	Female	38%	54%	40%

13. Be careful not to count the females with green eyes twice.
14. $y=5 x-2$
15. B

Section 9.4

Choosing a Data Display
 (pages 397-399)

1. yes; Different displays may show different aspects of the data.
2. Sample answer:

A bar graph shows the data in different color categories.
5. Sample answer: line graph; shows changes over time
7. Sample answer: line graph; shows changes over time
9. a. yes; The circle graph shows the data as parts of the whole.
b. no; The bar graph shows the number of students, not the portion of students.
11. The pictures of the bikes are the largest on Monday and the smallest on Wednesday, which makes it seem like the distance is the same each day.
13. The intervals are not the same size.
15. Sample answer: bar graph; Each bar can represent a different vegetable.
17. Sample answer: dot plot
21. a. -9
19. Does one display better show the differences in digits?
23. A
b. -8.6

Section 10.1

Exponents

(pages 414 and 415)

1. -3^{4} is the negative of 3^{4}, so the base is 3 , the exponent is 4 , and its value is $-81 .(-3)^{4}$ has a base of -3 , an exponent of 4 , and a value of 81 .
2. 3^{4}
3. $\left(-\frac{1}{2}\right)^{3}$
4. $\pi^{3} x^{4}$
5. $(6.4)^{4} b^{3}$
6. 25
7. 1
8. $\frac{1}{144}$
9. The negative sign is not part of the base; $-6^{2}=-(6 \cdot 6)=-36$.
10. $-\left(\frac{1}{4}\right)^{4}$
11. 29
12. 5
13. 66
14.

\boldsymbol{h}	1	2	3	4	5
$\mathbf{2}^{\boldsymbol{h}} \mathbf{- \mathbf { 1 }}$	1	3	7	15	31
$\mathbf{2}^{\boldsymbol{h}-\mathbf{1}}$	1	2	4	8	16

29. Remember to add the black keys when finding how many notes you travel.
30. Associative Property of Multiplication
31. B

Section 10.2

Product of Powers Property

 (pages 420 and 421)1. when multiplying powers with the same base
2. 3^{4}
3. $(-4)^{12}$
4. h^{7}
5. $\left(-\frac{5}{7}\right)^{17}$
6. 5^{12}
7. 3.8^{12}
8. The bases should not be multiplied. $5^{2} \cdot 5^{9}=5^{2+9}=5^{11}$
9. $216 g^{3}$
10. $\frac{1}{25} k^{2}$
11. $r^{12} t^{12}$
12. no; $3^{2}+3^{3}=9+27=36$ and $3^{5}=243$
13. 496
14. 78,125
15. a. $16 \pi \approx 50.27 \mathrm{in}^{3}$
b. $192 \pi \approx 603.19$ in. 3 Squaring each of the dimensions causes the volume to be 12 times larger.
16. Use the Commutative and Associative Properties of Multiplication to group the powers.
17. 4
18. 3
19. B

Section 10,3
 Quotient of Powers Property (pages 426 and 427)

1. To divide powers means to divide out the common factors of the numerator and denominator. To divide powers with the same base, write the power with the common base and an exponent found by subtracting the exponent in the denominator from the exponent in the numerator.
2. 6^{6}
3. $(-3)^{3}$
4. 5^{6}
5. $(-17)^{3}$
6. $(-6.4)^{2}$
7. b^{13}
8. You should subtract the exponents instead of dividing them. $\frac{6^{15}}{6^{5}}=6^{15-5}=6^{10}$
9. 2^{9}
10. π^{8}
11. k^{14}
12. $64 x$
13. $125 a^{3} b^{2}$
14. You are checking to see if there is a linear relationship between memory and price, not if the change in price is constant for consecutive sizes of MP3 players.
15. 10^{13} galaxies
16. -9
17. 61
18. B

19. $x^{7} y^{6}$

Section 10.4

1. no; Any nonzero base raised to a zero exponent is always 1 .
2. $5^{-5}, 5^{0}, 5^{4}$
3. 1
4. 1
5. $\frac{1}{36}$
6. $\frac{1}{16}$
7. $5 \frac{1}{4}$
8. $\frac{1}{125}$
9. The negative sign goes with the exponent, not the base. (4) ${ }^{-3}=\frac{1}{4^{3}}=\frac{1}{64}$
10. $2^{0} ; 10^{0}$
11. $\frac{a^{7}}{64}$
12. $5 b$
13. 12
14. $\frac{w^{6}}{9}$
15. 1,000,000 nanometers
16. Write the power as 1 divided by the power and use a negative exponent. Justifications will vary.
17. 10^{9}
18. 10^{4}

Section 10,5

Reading Scientific Notation (pages 440 and 441)

1. Scientific notation uses a factor greater than or equal to 1 but less than 10 multiplied by a power of 10 . A number in standard form is written out with all the zeros and place values included.
2. $5,600,000,000,000$
3. $87,300,000,000,000,000$
4. yes; The factor is greater than or equal to 1 and less than 10 . The power of 10 has an integer exponent.
5. no; The factor is greater than 10 .
6. yes; The factor is greater than or equal to 1 and less than 10 . The power of 10 has an integer exponent.
7. no; The factor is less than 1 .
8. 500
9. $1,660,000,000$
10. a. $810,000,000$ platelets
b. $1,350,000,000,000$ platelets
11. $1555.2 \mathrm{~km}^{2}$
12. 4^{5}
13. $70,000,000$
14. 0.000044
15. $9,725,000$
16. a. Bellatrix
b. Betelgeuse
17. $35,000,000 \mathrm{~km}^{3}$
18. $(-2)^{3}$

Section 10.6

Writing Scientific Notation

(pages 446 and 447)

1. If the number is greater than or equal to 10 , the exponent will be positive. If the number is less than 1 and greater than 0 , the exponent will be negative.
2. 2.1×10^{-3}
3. 3.21×10^{8}
4. 4×10^{-5}
5. 4.56×10^{10}
6. 8.4×10^{5}
7. 72.5 is not less than 10 . The decimal point needs to move one more place to the left. 7.25×10^{7}
8. $6.09 \times 10^{-5}, 6.78 \times 10^{-5}, 6.8 \times 10^{-5}$
9. $4.8 \times 10^{-8}, 4.8 \times 10^{-6}, 4.8 \times 10^{-5}$
10. $6.88 \times 10^{-23}, 5.78 \times 10^{23}, 5.82 \times 10^{23}$
11. $4.01 \times 10^{7} \mathrm{~m}$
12. $680,6.8 \times 10^{3}, \frac{68,500}{10}$
13. $6.25 \times 10^{-3}, 6.3 \%, 0.625,6 \frac{1}{4}$
14. 1.99×10^{9} watts
15. carat; Because 1 carat $=1.2 \times 10^{23}$ atomic mass units and 1 milligram $=6.02 \times 10^{20}$ atomic mass units, and $1.2 \times 10^{23}>6.02 \times 10^{20}$.
16. natural, whole, integer, rational
17. irrational

Section 10.7

Operations in Scientific Notation (pages 452 and 453)

1. Use the Distributive Property to group the factors together. Then subtract the factors and write it with the power of 10 . The number may need to be rewritten so that it is still in scientific notation.
2. 8.34×10^{7}
3. 4.947×10^{11}
4. 5.8×10^{5}
5. 5.2×10^{8}
6. 7.555×10^{7}
7. 1.037×10^{7}
8. You have to rewrite the numbers so they have the same power of 10 before adding; 3.03×10^{9}
9. 2.9×10^{-3}
10. 1.5×10^{0}
11. 2.88×10^{-7}
12. 1.12×10^{-2}
13. 4.006×10^{9}
14. First find the total length of the ridges and valleys.
15. $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
16. $\frac{1}{8}$
17. C

Key Vocabulary Index

Mathematical terms are best understood when you see them used and defined in context. This index lists where you will find key vocabulary. A full glossary is available in your Record and Practice Journal and at BigIdeasMath.com.
angle of rotation, 62
base, 412
center of dilation, 84
center of rotation, 62
concave polygon, 119
congruent figures, 44
convex polygon, 119
corresponding angles, 44
corresponding sides, 44
cube root, 296
dilation, 84
distance formula, 320
exponent, 412
exterior angles, 105
exterior angles of a polygon, 112
function, 245
function rule, 250
hemisphere, 351
hypotenuse, 302
image, 50
indirect measurement, 129
input, 244
interior angles, 105
interior angles of a polygon, 112
irrational number, 310
joint frequency, 388
legs, 302
line of best fit, 381
line of fit, 380
line of reflection, 56
linear equation, 144
linear function, 258
literal equation, 28
mapping diagram, 244
marginal frequency, 388
nonlinear function, 268
output, 244
perfect cube, 296
perfect square, 290
point-slope form, 186
power, 412
Pythagorean Theorem, 302
radical sign, 290
radicand, 290
real numbers, 310
reflection, 56
regular polygon, 121
relation, 244
rise, 150
rotation, 62
run, 150
scale factor, 84
scatter plot, 374
scientific notation, 438
similar figures, 72
similar solids, 356
slope, 150
slope-intercept form, 168
solution of a linear equation, 144
solution of a system of linear equations, 204
sphere, 348
square root, 290
standard form, 174
system of linear equations, 204
theorem, 300
transformation, 50
translation, 50
transversal, 104
two-way table, 388
x-intercept, 168
y-intercept, 168

Student Index

This student-friendly index will help you find vocabulary, key ideas, and concepts. It is easily accessible and designed to be a reference for you whether you are looking for a definition, real-life application, or help with avoiding common errors.

A

Addition Property of Equality, 4 Algebra
equations
graphing linear, 142-147
literal, 28
multi-step, 10-15
rewriting, 26-31
simple, 2-9
with variables on both sides, 18-25
formulas, See Formulas
functions
linear, 256-263
nonlinear, 266-271
relations and, 242-247
representing, 245-255
linear equations
graphing, 142-147
lines of fit, 378-383
slope of a line, 148-157
slope-intercept form, 166-183
standard form, 172-177
systems of, 202-229
properties, See Properties
Angle(s)
alternate exterior, 106
alternate interior, 106
corresponding, 104-105
defined, 44
error analysis, 107
exterior
defined, 105
error analysis, 115
interior, defined, 105
of polygons, 118-125
defined, 112
error analysis, 123, 124
reading, 120
real-life application, 121
similar, 126-131
of rotation, 62
of triangles, 110-115
exterior, 112
interior, 112
real-life application, 113 similar, 128
Angle of rotation, defined, 62
Area of similar figures, 76-81
formula, 78
writing, 80

B

Bar graphs, 394
Base, defined, 412
Box-and-whisker plots, 394

c

Center of dilation, defined, 84
Center of rotation, defined, 62
Choose Tools, Throughout. For example, see:
graphing linear equations, 143
indirect measurement, 127
scientific notation, 447
slope, 154
systems of linear equations, 203
Circle graphs, 394
Common Error
linear functions, 259
Pythagorean Theorem, 320
Quotient of Powers Property, 424
scientific notation, 445
transformations
rotations, 63
similar figures, 72
Comparison chart, 264
Concave polygon, defined, 119
Cone(s)
volume of, 340-345
error analysis, 344
formula, 342
real-life application, 343
writing, 344
Congruent figures, 42-47
corresponding angles, 44
corresponding sides, 44
defined, 44
error analysis, 47
identifying, 44
naming parts, 44
reading, 44
Connections to math strands, Throughout. For example, see:
Algebra, 305
Geometry, 24, 25, 75, 81, 109, $125,131,147,156,157,293$, 299, 453
Convex polygon, defined, 119

Coordinate plane(s)
transformations in the dilations, 82-89
reflections, 55-59
rotations, 61-67
translations, 49-53

Corresponding angles

defined, 44
naming, 44
symbol, 44

Corresponding sides

defined, 44
error analysis, 47
naming, 44
symbol, 44
Critical Thinking, Throughout. For example, see:
angle measures, 109
cube roots, 299
equations
multi-step, 15
simple, 9
exponents, 415
Product of Powers Property, 420, 421
Quotient of Powers Property, 427
zero, 432
linear equations, 170
graphing, 171, 177
in slope-intercept form, 171, 183
solving systems of, 207, 223
in standard form, 177
writing, 183
proportional relationships, 163
scientific notation, 441, 453
similar triangles, 131
slope, 153, 154, 155
slope-intercept form, 170
solids, 339
square roots, 292
transformations
congruent figures, 47
dilations, 89
reflections, 59
rotations, 67
similar figures, 74, 75
volume
of cones, 345
of cylinders, 339

Cube root(s)

defined, 296
finding, 294-299
real-life application, 297
perfect cube, 296
Cylinder(s)
volume of, 334-339
formula, 336
modeling, 339
real-life application, 337

(D)

Data, See also Equations; Graphs analyzing
line of best fit, 381
writing, 382
displaying
bar graph, 394
box-and-whisker plot, 394
choosing a display, 392-399
circle graph, 394
dot plot, 394
histogram, 394
line graph, 394
pictograph, 394
project, 393
scatter plot, 372-377, 394
stem-and-leaf plot, 394
two-way table, 386-391
writing, 398
identifying relationships, 375
linear, 375
negative, 375
nonlinear, 375
positive, 375
joint frequencies, 388
marginal frequencies, 388
misleading displays, 396
Decimal(s)
repeating, 316-317
Different Words, Same Question, Throughout. For example, see:
angles of polygons, 123
exponents, 432
functions, 253
rotations, 65
solving equations, 30
triangles, 304
volume of cylinders, 338
Dilation(s), 82-89
center of, 84
in the coordinate plane, 82-89
defined, 84
error analysis, 88
scale factor, 84

Direct variation, See also Proportional relationships
Distance formula, 319-323
defined, 320
error analysis, 322
real-life application, 321
Distributive Property
equations with variables on both sides, 20
multi-step equations, 13
Division Property of Equality, 5
Dot plots, 394

Equality
Addition Property of, 4
Division Property of, 5
Multiplication Property of, 5
Subtraction Property of, 4
Equation(s), See also Linear equations
function rules, 250
literal, 28
multi-step, 10-15
error analysis, 14
real-life application, 13
rewriting, 26-31
error analysis, 30
real-life application, 29
simple, 2-9
error analysis, 8
modeling, 8
real-life application, 6
solving
by addition, 4
by division, 5
by multiplication, 5
multi-step, 10-15
by rewriting, 26-31
simple, 2-9
by subtraction, 4
two-step, 12
with variables on both sides, 18-25
with variables on both sides, 18-25
error analysis, 23, 24
real-life application, 22
writing, 23
Error Analysis, Throughout. For example, see:
angles
corresponding, 107
exterior, 115
of polygons, 123, 124
congruent figures, 47
corresponding sides, 47
distance formula, 322
equations
multi-step, 14
rewriting, 30
simple, 8
with variables on both sides, 23, 24
exponents
evaluating expressions, 414
negative, 432
functions
graphing, 254
relations and, 246
linear equations
graphing, 146
in slope-intercept form, 170, 182
solving systems of, 207, 213, 228
in standard form, 176
parallel lines, 107
powers
Product of Powers Property, 420
Quotient of Powers Property, 426
Pythagorean Theorem, 304, 322
relations, 246
scientific notation
operations in, 452
writing numbers in, 446
writing in standard form, 440
slope, 154
square roots, 313
finding, 292
systems of linear equations
solving by elimination, 221, 222
solving by graphing, 207
solving special, 228
solving by substitution, 213
transformations
dilations, 88
triangles
exterior angles of, 115
Pythagorean Theorem, 304
volume
of cones, 344
of similar solids, 360
Example and non-example chart, 116
Exponent(s)
defined, 412
evaluating expressions, 410-415
error analysis, 414
real-life application, 413
negative, 428-433
defined, 430
error analysis, 432
real-life application, 431
writing, 432
powers and, 410-421
error analysis, 420, 426
real-life application, 425
writing, 426
properties of
Power of a Power Property, 418
Power of a Product Property, 418
Product of Powers Property, 416-421
Quotient of Powers Property, 422-427
quotients and, 422-427
scientific notation
defined, 438
error analysis, 440, 446, 452
operations in, 448-453
project, 453
reading numbers in, 436-441
real-life applications, 439, 445, 451
writing numbers in, 442-447
zero, 428-433
defined, 430
Expressions
evaluating exponential, 410-415
error analysis, 414
real-life application, 413

Exterior angle(s)

alternate, 106
angle sum of, 122
real-life application, 121
defined, 105, 112
of triangles, 110-115 error analysis, 115
Exterior angles of a polygon, defined, 112

F

Formula(s)
area of similar figures, 78
distance, 320
perimeter of similar figures, 78
Pythagorean Theorem, 302
rewriting, 26-31
slope, 148,150
surface area of similar solids, 357
temperature conversion, 29
volume
of a cone, 342
of a cylinder, 336
of a hemisphere, 351
of similar solids, 358
of a sphere, 350
Formula triangle, 346
Four square, 306
Fraction(s)
repeating decimals written as, 316-317

Function(s)

defined, 245
function rules
defined, 250
real-life application, 252
writing, 250-255
linear, 256-263
compared to nonlinear, 266-271
defined, 258
modeling, 271
real-life applications, 259, 269
writing, 261
nonlinear
compared to linear, 266-271
defined, 268
real-life application, 269
relations and, 242-247
error analysis, 246
inputs, 244
mapping diagrams, 242-247
outputs, 244
research, 247
representing
error analysis, 254
with graphs, 248-255
with input-output tables, 248-255
with mapping diagrams, 245-247, 252
real-life application, 252
writing, 253

Function rule(s)

defined, 250
real-life application, 252
writing, 250-255

(G)

Geometry
angles, 102-115, 118-131
corresponding, 44
exterior, 105, 112
interior, 105, 112
of polygons, 118-125
of rotation, 62
area of similar figures, 76-81
line of reflection, 56
parallel lines, 102-109
perimeter of similar figures, 76-81
polygons
angles of, 118-125
concave, 119
convex, 119
Pythagorean Theorem, 300-305
converse of, 320
defined, 302
using, 318-323
sides, corresponding, 44
solids
cones, 340-345
cylinders, 334-339
similar, 354-361
spheres, 348-353
surface area of, 354-361
volume of, 334-345, 348-361, 354-361
tessellation, 48-49
transformations
congruent figures, 42-47
dilations, 82-89
reflections, 54-59
rotations, 60-67
similar figures, 70-81
translations, 48-53
transversals, 102-109
triangles
angles of, 110-115
congruent, 42-44
hypotenuse, 302
legs, 302
right, 302
similar, 126-131
Graphic Organizers
comparison chart, 264
example and non-example chart, 116
formula triangle, 346
four square, 306
information frame, 384
information wheel, 434
notetaking organizer, 214
process diagram, 164
summary triangle, 68
Y chart, 16
Graphs
analyzing, 272-277
bar graphs, 394
box-and-whisker plots, 394
circle graphs, 394
dot plots, 394
of functions, 248-255
error analysis, 254
histograms, 394
line graphs, 394
linear, 142-147
defined, 144
error analysis, 146
of horizontal lines, 144
real-life application, 145
in slope-intercept form, 166-171
solution of, 144
in standard form, 172-177
of vertical lines, 144
misleading, 396
pictographs, 394
proportional relationships, 158-163
scatter plots, 372-377, 394
sketching, 272-277
slope, 148-157
defined, 148, 150
error analysis, 154
formula, 148, 150
reading, 150
stem-and-leaf plots, 394
used to solve linear equations, 230-231
real-life application, 231
used to solve systems of linear
equations, 202-207
error analysis, 207
modeling, 207
real-life application, 205

H

Hemisphere(s)
defined, 351
volume formula, 351
Histograms, 394
Hypotenuse, defined, 302

Image(s)
defined, 50
reading, 50
Indirect measurement, 127-129
defined, 129
modeling, 127
project, 127
Information frame, 384
Information wheel, 434
Input(s), defined, 244
Input-output tables
using to represent functions, 248-255

Interior angle(s)

alternate, 106
defined, 105, 112
of triangles, 110-115 real-life application, 113
Interior angles of a polygon, defined, 112
Irrational number(s), defined, 310

Joint frequency, defined, 388

Leg(s), defined, 302
Like terms, combining to solve equations, 12
Line(s)
graphing
horizontal, 144
vertical, 144
parallel, 102-109
defined, 104
error analysis, 107
project, 108
slope of, 156
symbol, 104
perpendicular defined, 104
slope of, 157
symbol, 104
of reflection, 56
slope of, 148-157
transversals, 102-109
x-intercept of, 168
y-intercept of, 168
Line of best fit, defined, 381
Line of fit, 378-383
defined, 380
line of best fit, 381
modeling, 378, 379, 383
writing, 382
Line graphs, 394
Line of reflection, defined, 56
Linear equation(s), See also
Equations, Proportional relationships
defined, 144
graphing, 142-147
error analysis, 146
horizontal lines, 144
real-life applications, 145, 175, 231
in slope-intercept form, 166-171
to solve, 230-231
in standard form, 172-177
vertical lines, 144
lines of fit, 378-383
modeling, 378, 379, 383
point-slope form
defined, 186
real-life application, 187
writing, 188
writing in, 184-189
slope of a line, 148-157
defined, 148, 150
error analysis, 154
formula, 148, 150
reading, 150
slope-intercept form
defined, 168
error analysis, 170, 182
real-life applications, 169, 181
writing in, 178-183
x-intercept, 168
y-intercept, 168
solution of, 144
standard form, 172-177
defined, 174
error analysis, 176
modeling, 177
real-life application, 175
writing, 176
systems of
defined, 202, 204
error analysis, 207, 213, 221, 222, 228
modeling, 207
reading, 204
real-life applications, 205, 211, 220
solution of a, 204
solving by elimination, 216-223
solving by graphing, 202-207
solving special, 224-229
solving by substitution, 208-213
writing, 206, 212, 221, 228
Linear function(s), 256-263
compared to nonlinear, 266-271
real-life application, 269
defined, 258
modeling, 271
real-life application, 259
writing, 261
Linear measures, 357
Literal equation(s), defined, 28
Logic, Throughout. For example, see:
angles
interior, 110
measures, 108
cube roots, 299
equations
rewriting, 31
simple, 9
linear equations
graphing, 142, 177
in slope-intercept form, 167
solving systems of, 217, 223, 229
scatter plots, 376
systems of linear equations, 217, 223, 229
transformations
similar figures, 75

01

Mapping diagram(s), 242-247
defined, 244
Marginal frequency, defined, 388
Meaning of a Word
dilate, 82
reflection, 54
rotate, 60
translate, 48
transverse, 102
Mental Math, Throughout. For example, see:
rotations, 65
Modeling, Throughout. For example, see:
equations, 8
indirect measurement, 127
linear equations
lines of fit, $378,379,383$
solving systems of, 207
in standard form, 177
linear functions, 271
Pythagorean Theorem, 300
volume of a cylinder, 339
Multiplication Property of Equality, 5

N

Nonlinear function(s)

compared to linear, 266-271
real-life application, 269
defined, 268
Notetaking organizer, 214
Number(s)
irrational, 310-315
defined, 310
rational, 310
real, 310-315
classifying, 310
defined, 310

Number Sense, Throughout. For example, see:
analyzing data, 382
angles
exterior, 114
of a polygon, 123
cube roots, 299
exponents, 414, 427, 432
functions, 271
real numbers, 315
scientific notation, 441, 452
similar solids
surface area of, 359
volume of, 359
square roots, 292
systems of linear equations
solving by elimination, 221
solving by substitution, 212, 213
transformations
reflections, 59
similar figures, 80

0

Open-Ended, Throughout. For example, see:
data
histograms, 397
misleading displays, 397
scatter plots, 377
two-way tables, 390
dilations, 89
equations
linear, 170
multi-step, 14
simple, 9
with variables on both sides, 23, 24
exponents, 433
parallel lines, 107
similar solids, 359
similar triangles, 131
slope, 153
square roots, 315
Output(s), defined, 244

P

Parallel line(s)
defined, 104
slope of, 156
symbol, 104
and transversals, 102-109
error analysis, 107
project, 108
Perfect cube, defined, 296

Perfect square, defined, 290
Perimeter of similar figures, 76-81
formula, 78
writing, 80
Perpendicular line(s)
defined, 104
slope of, 157
symbol, 104
Pictographs, 394
Point-slope form
defined, 186
writing equations in, 184-189
real-life application, 187
writing, 188
Polygon(s)
angles, 118-125
error analysis, 123, 124
exterior, 112
interior, 112
measures of interior, 120
real-life application, 121
sum of exterior, 122
concave, 119
convex, 119
defined, 120
reading, 120
regular, 121
triangles, 110-115
error analysis, 115
modeling, 127
project, 127
similar, 126-131
writing, 130
Power(s), See also Exponents
base of, 412
defined, 412
exponent of, 412
of a power, 418
of a product, 418
product of, 416-421
error analysis, 420
Product of Powers Property, 418
quotient of, 422-427
error analysis, 426
Quotient of Powers Property, 424
real-life application, 425
writing, 426
scientific notation
defined, 438
error analysis, 440, 446, 452
operations in, 448-453
project, 453
reading numbers in, 436-441
real-life applications, 439, 445, 451
writing numbers in, 442-447

Power of a Power Property, 418
Power of a Product Property, 418
Precision, Throughout. For example, see:
analyzing data, 391
angles of a triangle, 115
equations with variables on both sides, 24,25
exponents, 433
functions, 246
indirect measurement, 127
linear equations
graphing, 142, 146
in slope-intercept form, 182
Product of Powers Property, 420
Pythagorean Theorem, 305
relations, 246
similar solids, 361
square roots, 293
systems of linear equations, 229
transformations
rotations, 61
translations, 49
Problem Solving, Throughout. For example, see:
angles of a polygon, 124
area and perimeter, 81
data displays, 377
equations with variables on both sides, 25
linear equations
graphing, 147
in point-slope form, 189
solving systems of, 223
linear functions, 263
proportional relationships, 163
Pythagorean Theorem, 301
scatter plots, 377
solids, 339
transformations
dilations, 89
translations, 53
volume of a cylinder, 339
Process diagram, 164
Product of Powers Property, 416-421
defined, 418
error analysis, 420
Properties
Addition Property of Equality, 4
Division Property of Equality, 5
Multiplication Property of Equality, 5
Power of a Power Property, 418
Power of a Product Property, 418
Product of Powers Property, 416-421

Quotient of Powers Property, 422-427
Subtraction Property of Equality, 4
Proportional relationships
direct variation, 160
graphing, 158-163
Proportions similar figures, 70-81
Pythagorean Theorem, 300-305
converse of, 320
defined, 302
error analysis, 304
modeling, 300
project, 305
real-life applications, 303, 321
using, 318-323
distance formula, 320
error analysis, 322
writing, 322

(0)

Quotient of Powers Property, 422-427
defined, 424
error analysis, 426
real-life application, 425
writing, 426

R

Radical sign, defined, 290
Radicand, defined, 290
Ratio
similar figures
areas of, 78
perimeters of, 78
Rational number(s), defined, 310
Reading
images, 50
polygons, 120
slope, 150
symbol
congruent, 44
prime, 50
similar, 72
systems of linear equations, 204
Real number(s), 310-315
classifying, 310
defined, 310
error analysis, 313
Real-Life Applications, Throughout.
For example, see:
angles of triangles, 113
cube roots, 297
distance formula, 321
equations
multi-step, 13
rewriting, 29
simple, 6
with variables on both sides, 22
exponents
evaluating expressions, 413
negative, 431
Quotient of Powers Property, 425
functions
graphing, 252
linear, 259
interior angles of a polygon, 121
linear equations
graphing, 145
in point-slope form, 187
in slope-intercept form, 169, 181
solving systems of, 205, 211, 220
solving using graphs, 231
in standard form, 175
writing, 181
linear functions, 269
nonlinear functions, 269
Pythagorean Theorem, 303, 321
scientific notation
operations in, 451
reading numbers in, 439
writing numbers in, 445
similar figures, 73
square roots
approximating, 312
finding, 291
systems of linear equations, 205
solving by elimination, 220
solving by substitution, 211
volume
of cones, 343
of cylinders, 337
Reasoning, Throughout. For example, see:
analyzing graphs, 277
angle measures, 108, 115, 124
congruent figures, 47
cube roots, 295, 298
data
analyzing, 387
displaying, 397, 399
scatter plots, 376,377
two-way tables, 387, 391
distance formula, 323
equations
rewriting, 31
simple, 9
exponents, 433
exterior angles of polygons, 124
functions
graphing, 255
linear, 263
indirect measurement, 130
linear equations
in point-slope form, 189
in slope-intercept form, 171
lines of fit, 382, 383
perfect squares, 293
Product of Powers Property, 420
proportional relationships, 162, 163
Pythagorean Theorem, 323
scientific notation
operations in, 448
reading numbers in, 441
writing numbers in, 446, 447
slope, 153, 155
square roots, 292
systems of linear equations
solving by elimination, 222, 223
solving by graphing, 207
solving special, 228, 229
solving by substitution, 212
transformations
congruent figures, 59
dilations, 87, 89
reflections, 58, 59
rotations, 67
similar figures, 75,81
translations, 53
triangles
exterior angles of, 115
similar, 126, 130, 131
volume
of cones, 344, 345
of cylinders, 338, 353
of spheres, 353
Reflection(s), 54-59
in the coordinate plane, 55-59
defined, 56
line of, 56
writing, 58
Regular polygon(s), defined, 121
Relation(s)
defined, 244
functions and, 242-247
error analysis, 246
research, 247
inputs, 244
mapping diagrams, 242-247
defined, 244
outputs, 244

Repeated Reasoning, Throughout. For example, see:
cube roots, 314
equations, 31
exponents, 410
negative, 429
zero, 428
inputs and outputs, 247
polygons
angles of, 111, 118, 119
repeating decimals, 316, 317
similar solids
surface area of, 355
volume of, 355, 361
slope, 149
systems of linear equations, 213
Repeating decimals
writing as fractions, 316-317
Rise, defined, 150
Rotation(s), 60-67
angle of, 62
center of, 62
in the coordinate plane, 61-67
defined, 62
rotational symmetry, 66
Run, defined, 150

s

Scale factor, defined, 84
Scatter plot(s), 372-379, 394
defined, 374
identifying relationships, 375
linear, 375
negative, 375
nonlinear, 375
positive, 375
interpreting, 374-375
line of best fit, 381
lines of fit, 378-383
defined, 380
modeling, 378, 379, 383
writing, 382
Scientific notation
defined, 438
operations in, 448-453
error analysis, 452
real-life application, 451
writing, 452
project, 453
reading numbers in, 436-441 real-life application, 439 writing, 440
writing numbers in, 442-447
error analysis, 440, 446
real-life application, 445
standard form, 438-439
writing, 446
Side(s)
corresponding, defined, 44
Similar figures, 70-81
areas of, 76-81
formula, 78
writing, 80
defined, 72
perimeters of, 76-81
formula, 78
writing, 80
reading, 72
real-life application, 73

Similar solids

defined, 356
surface area of, 354-361
linear measures, 357
volume of, 354-361
error analysis, 360
formula, 358
Slope, 148-157
defined, 148, 150
error analysis, 154
formula, 148, 150
negative, 152
and parallel lines, 156
and perpendicular lines, 157
positive, 152
project, 154
reading, 150
rise, 150
run, 150
undefined, 152
zero, 152
Slope-intercept form, 166-171
defined, 168
graphing equations in, 166-171
error analysis, 170
real-life application, 169
writing equations in, 178-183
error analysis, 182
real-life application, 181
writing, 182
x-intercept, 168
y-intercept, 168
Solids
cones
real-life application, 343
volume of, 340-345
writing, 344
cylinders
modeling, 339
real-life application, 337
volume of, 334-339
hemispheres, 351
volume of, 351
similar
defined, 356
error analysis, 360
linear measures, 357
volume of, 354-361
spheres
volume of, 348-353
surface area of, 354-361
formula, 357
volume of, 334-345, 348-361
error analysis, 344
real-life applications, 337, 343
Solution of a linear equation, defined, 144
Solution of a system of linear equations, defined, 204
Sphere(s)
defined, 348
volume of, 348-353
formula, 350
Square root(s)
approximating, 308-315
real-life application, 312
writing, 314
defined, 290
error analysis, 313
finding, 288-293
error analysis, 292
real-life application, 291
perfect square, 290
radical sign, 290
radicand, 290
Standard form of a linear equation
defined, 174
graphing equations in, 172-177
error analysis, 176
modeling, 177
real-life application, 175
writing, 176
Standard form of a number
scientific notation and, 438-439
Stem-and-leaf plots, 394
Structure, Throughout. For example, see:
angles of a polygon, 110, 119
data displays, 399
distance formula, 323
equations, 3
exponents, 414, 429
linear equations
solving using graphs, 230
linear functions, 261
Pythagorean Theorem, 323
real numbers, 315
repeating decimals, 316
scientific notation, 448
slope, 155
square roots, 308, 315
systems of linear equations, 213, 217
transformations
dilations, 88, 89
similar figures, 81
volume of solids, 345
Study Tip
analyzing graphs, 274
angles
alternate exterior, 106
alternate interior, 106
corresponding, 104
exterior, 113
direct variation, 160
equations, 13
exponents, 418
Quotient of Powers Property, 425
linear equations, 168, 231, 268
line of best fit, 381
line of fit, 380
in point-slope form, 187
in slope-intercept form, 168
in standard form, 174
system of, 205
writing, 180, 187
powers, 412
proportional relationships, 160
Pythagorean triples, 320
real numbers, 310
right triangles, 302
scientific notation, 438, 444, 450
in standard form, 450
slope, 150, 151, 160
solids, 351
cones, 342
similar solids, 358
square roots
approximating, 311
of zero, 290
systems of linear equations, 205, 211, 218, 219, 226
transformations
dilations, 85
rotations, 62, 63
transversals, 104, 106
volume
of cones, 342
of cylinders, 336
Substitution
to solve systems of linear equations, 208-213
Subtraction Property of Equality, 4
Summary triangle, 68
Surface area
of similar solids, 354-361
formula, 357
linear measures, 357

Symbols
congruent, 44
parallel lines, 104
perpendicular lines, 104
prime, 50
similar, 72
square root, 290
Symmetry, rotational, 66
System of linear equations
defined, 202, 204
reading, 204
solution of a
defined, 204
solving by elimination, 216-223
error analysis, 221, 222
real-life application, 220
writing, 221
solving by graphing, 202-207
error analysis, 207
modeling, 207
real-life application, 205
writing, 206
solving special, 224-229
error analysis, 228
infinitely many solutions, 226
no solution, 226
one solution, 226
writing, 228
solving by substitution, 208-213
error analysis, 213
real-life application, 211
writing, 212

T

Theorem, defined, 300
Transformation(s)
congruent figures, 42-47
corresponding angles of, 44
corresponding sides of, 44
defined, 44
error analysis, 47
identifying, 44
reading, 44
defined, 50
dilations, 82-89
center of, 84
in the coordinate plane, 82-89
defined, 84
error analysis, 88
scale factor, 84
image, 50
reflections, 54-59
in the coordinate plane, 55-57
defined, 56
line of, 56
writing, 58
rotations, 60-67
angle of, 62
center of, 62
in the coordinate plane, 61-67
defined, 62
rotational symmetry, 66
similar figures, 70-81
areas of, 76-81
defined, 72
perimeters of, 76-81
reading, 72
real-life application, 73
writing, 80
tessellations, 48-49
translations, 48-53
in the coordinate plane, 50
defined, 50
writing, 52
Translation(s), 48-53
in the coordinate plane, 49-53
defined, 50
tessellations, 48-49
writing, 52
Transversal(s), 102-109
alternate exterior angles and, 106
alternate interior angles and, 106
corresponding angles and, 104
defined, 104
exterior angles and, 105
interior angles and, 105
Triangle(s)
angles of, 110-115
error analysis, 115
exterior, 112
interior, 112
real-life application, 113
congruent, 42-44
Pythagorean Theorem, 300-305
defined, 302
error analysis, 304, 322
project, 305
real-life applications, 303, 321
using, 318-323
right
hypotenuse, 302
legs, 302
similar, 126-131
angles of, 128
modeling, 127
project, 127
writing, 130
Two-way table(s), 386-391
defined, 388
joint frequencies, 388
marginal frequencies, 388

V

Volume
of composite solids, 351
of cones, 340-345
error analysis, 344
formula, 342
real-life application, 343
writing, 344
of cylinders, 334-339
modeling, 339
real-life application, 337
of similar solids, 354-361
error analysis, 360
formula, 358
of spheres, 348-353
formula, 350

W

Which One Doesn't Belong?, Throughout. For example, see:
angle measures, 107
corresponding angles, 46
equations
linear, 146
simple, 7
exponents, 414
functions, 270
polygons, 123
powers, 426
Pythagorean Theorem, 322
scientific notation, 440
similar triangles, 130
square roots, 313
systems of linear equations, 221
transformations
congruent figures, 46
reflections, 58
volume of solids, 352
Writing, Throughout. For example, see:
displaying data, 398
equations
multi-step, 14
with variables on both sides, 23
exponents, 432
functions
linear, 261
representing, 253
linear equations
in point-slope form, 188
in standard form, 176
lines of fit, 382
powers, 426
Pythagorean Theorem, 322
scientific notation, 440, 446, 452
similar triangles, 130
square roots, 313,314
systems of linear equations, 206
solving by elimination, 221
solving by graphing, 206
solving special, 228
solving by substitution, 212
transformations
reflections, 58
similar figures, 80
translations, 52
volume of solids, 344

\boldsymbol{x}-intercept, defined, 168

Y chart, 16
y-intercept, defined, 168

Photo Credits

Cover

Pavelk/Shutterstock.com, Pincasso/Shutterstock.com, valdis torms/Shutterstock.com

Front matter

i Pavelk/Shutterstock.com, Pincasso/Shutterstock.com, valdis torms/ Shutterstock.com; iv Big Ideas Learning, LLC; viii top ©iStockphoto.com/Lisa Thornberg, ©iStockphoto.com/Ann Marie Kurtz; bottom ©iStockphoto.com/Jane norton; ix top Kasiap/ Shutterstock.com, ©iStockphoto.com/Ann Marie Kurtz; bottom wavebreakmedia ltd/Shutterstock.com; \mathbf{x} top ©iStockphoto.com/ sumnersgraphicsinc, ©iStockphoto.com/Ann Marie Kurtz; bottom Odua Images/Shutterstock.com; xi top ©iStockhphoto.com/Jonathan Larsen; bottom James Flint/Shutterstock.com; xii top stephan kerkhofs/ Shutterstock.com, Cigdem Sean Cooper/Shutterstock.com, ©iStockphoto.com/Andreas Gradin; bottom william casey/ Shutterstock.com; xiii top ©iStockphoto.com/ALEAIMAGE, ©iStockphoto.com/Ann Marie Kurtz; bottom Edyta Pawlowska/ Shutterstock.com; xiv top ©iStockphoto/Michael Flippo, ©iStockphoto.com/Ann Marie Kurtz; bottom PETER CLOSE/ Shutterstock.com; xv top ©iStockphoto.com/ALEAIMAGE, ©iStockphoto.com/Ann Marie Kurtz; bottom Kharidehal Abhirama Ashwin/Shutterstock.com; xvi top ©iStockphoto.com/Alistair Cotton; bottom ©iStockphoto.com/Noraznen Azit; xvii top Varina and Jay Patel/ Shutterstock.com, ©iStockphoto.com/Ann Marie Kurtz; bottom ©iStockphoto.com/Thomas Perkins; xviii Ljupco Smokovski/ Shutterstock.com

Chapter 1

1 ©iStockphoto.com/Lisa Thornberg, ©iStockphoto.com/Ann Marie Kurtz; 6 ©iStockphoto.com/David Freund; 7 ©iStockphoto.com/nicolas hansen; 8 amskad/Shutterstock.com; 9 ©iStockphoto.com/Ryan Lane; 12 ©iStockphoto.com/Harley McCabe; 13 ©iStockphoto.com/Jacom Stephens; 14 ©iStockphoto.com/Harry Hu; 15 ©iStockphoto.com/ Ralf Hettler, Vibrant Image Studio/Shutterstock.com; 23 ©iStockphoto.com/Andrey Krasnov; 24 Shawn Hempel/ Shutterstock.com; 31 top right ©iStockphoto.com/Alan Crawford; center left ©iStockphoto.com/Julio Yeste; bottom right ©iStockphoto.com/Mark Stay; $\mathbf{3 6}$ center right Ljupco Smokovski/ Shutterstock.com; bottom left emel82/Shutterstock.com

Chapter 2

40 Kasiap/Shutterstock.com, ©iStockphoto.com/Ann Marie Kurtz; 48 Azat1976/Shutterstock.com; 52 ©iStockphoto.com/Er Ten Hong; 53 center left ©iStockphoto.com/Sergey Galushko; center right ©iStockphoto.com/Tryfonov levgenii; 54 ©iStockphoto.com/ingmar wesemann; 59 ©iStockphoto.com/Hazlan Abdul Hakim; 67 ©iStockphoto.com/Maksim Shmeljov; 70 top ©iStockphoto.com/ Viatcheslav Dusaleev; bottom left ©iStockphoto.com/Jason Mooy; bottom right ©iStockphoto.com/Felix Möckel; 73 gary718/ Shutterstock.com; $\mathbf{8 3}$ Diego Cervo/Shutterstock.com; $\mathbf{9 0}$ center left Antonio Jorge Nunes/Shutterstock.com, Tom C Amon/ Shutterstock.com; center right ©iStockphoto.com/Alex Slobodkin

Chapter 3

100 @iStockphoto.com/sumnersgraphicsinc, ©iStockphoto.com/ Ann Marie Kurtz; 102 PILart/Shutterstock.com, Wildstyle/ Shutterstock.com; 103 Estate Craft Homes, Inc.; 114 Marc Dietrich/ Shutterstock.com; $\mathbf{1 2 0}$ bottom left ©iStockphoto.com/Evgeny Terentev; bottom right ©iStockphoto.com/Vadym Volodin; 121 NASA;
124 iStockphoto.com/Evelyn Peyton; 125 top right ©iStockphoto.com/ Terraxplorer; top left ©iStockphoto.com/Lora Clark; center right ©iStockphoto.com/Jennifer Morgan

Chapter 4

140 ©iStockphoto.com/Jonathan Larsen; 145 NASA;
146 ©iStockphoto.com/David Morgan; 147 top right NASA; center left ©iStockphoto.com/jsemeniuk; 154 ©iStockphoto.com/Amanda Rohde; 155 Julian Rovagnati/Shutterstock.com; 159 RyFlip/Shutterstock.com; 162 Luke Wein/Shutterstock.com; 165 AVAVA/Shutterstock.com; 170 ©iStockphoto.com/Dreamframer; 171 top right Jerry Horbert/ Shutterstock.com; center left ©iStockphoto.com/Chris Schmidt; 173 ©iStockphoto.com/biffspandex; 176 ©iStockphoto.com/ Stephen Pothier; $\mathbf{1 7 7}$ top left Gina Smith/Shutterstock.com; center left Dewayne Flowers/Shutterstock.com; 181 Herrenknecht AG; 182 ©iStockphoto.com/Adam Mattel; 183 top left ©iStockphoto.com/ Gene Chutka; center right ©iStockphoto.com/marcellus2070,
©iStockphoto.com/beetle8; 187 ©iStockphoto.com/Connie Maher; 188 ©iStockphoto.com/Jacom Stephens; 189 top right ©iStockphoto.com/Petr Podzemny; bottom left ©iStockphoto.com/ adrian beesley; 190 Richard Goldberg/Shutterstock.com; 196 Thomas M Perkins/Shutterstock.com

Chapter 5

200 stephan kerkhofs/Shutterstock.com, Cigdem Sean Cooper/ Shutterstock.com, ©iStockphoto.com/Andreas Gradin; 202 Howard Sandler/Shutterstock.com, ©iStockphoto.com/Dori OConnell; 205 Richard Paul Kane/Shutterstock.com; 206 ©iStockphoto.com/ Kathy Hicks; 208 top right YuriyZhuravov/Shutterstock.com; bottom right Talvi/Shutterstock.com; 211 aguilarphoto/Shutterstock.com; 212 Kiselev Andrey Valerevich/Shutterstock.com; $\mathbf{2 1 3}$ center left Susan Schmitz/ Shutterstock.com; center right akva/Shutterstock.com; 215 Andrey Yurlov/ Shutterstock.com; 216 Steve Cukrov/Shutterstock.com; 220 Le Do/ Shutterstock.com, Quang Ho/Shutterstock.com, SergeyIT/ Shutterstock.com, jon Le-Bon/Shutterstock.com; 221 Ariwasabi/ Shutterstock.com; 222 Ewa/Shutterstock.com; 223 top left Gordana Sermek/Shutterstock.com; center right Rashevskyi Viacheslav/ Shutterstock.com; 224 ©iStockphoto.com/walik; 228 ©iStockphoto.com/ Corina Estepa; 229 ©iStockphoto.com/Tomislav Forgo;
231 Kateryna Larina/Shutterstock.com; 232 Selena/Shutterstock.com; 236 kostudio/Shutterstock.com

Chapter 6

240 ©iStockphoto.com/ALEAIMAGE, ©iStockphoto.com/Ann Marie Kurtz; 247 @iStockphoto.com/Kevin Panizza; 249 ©iStockphoto.com/ Jacom Stephens; 252 ©iStockphoto.com/DivaNir4a; 254 top left ©iStockphoto.com/Manuel Angel Diaz Blanco; bottom right ©iStockphoto.com/Sergey Lemeshencko; 255 ©iStockphoto.com/ Robert Rushton; 259 General Atomics Aeronautical Systems, Inc.; 262 ©iStockphoto.com/Mlenny Photography; 263 ©iStockphoto.com/ medobear; 267 ©iStockphoto.com/PeskyMonkey;
271 ©iStockphoto.com/Tom Buttle; 278 gillmar/Shutterstock.com

Chapter 7

286 ©iStockphoto/Michael Flippo, ©iStockphoto.com/Ann Marie Kurtz; 291 Perfectblue97; 292 ©iStockphoto.com/Benjamin Lazare; 293 top right ©iStockphoto.com/iShootPhotos, LLC; center left ©iStockphoto.com/Jill Chen, Oleksiy Mark/Shutterstock.com; 298 Gary Whitton/Shutterstock.com; 299 Michael Stokes/ Shutterstock.com; $\mathbf{3 0 0}$ ©Oxford Science Archive/Heritage Images/ Imagestate; $\mathbf{3 0 4}$ ©iStockphoto.com/Melissa Carroll; $\mathbf{3 0 7}$ center left ©iStockphoto.com/Yvan Dubé; bottom right Snvv/Shutterstock.com; 308 ©iStockphoto.com/Kais Tolmats; 312 top left ©iStockphoto.com/ Don Bayley; center left ©iStockphoto.com/iLexx;
315 ©iStockphoto.com/Marcio Silva; 319 Monkey Business Images/ Shutterstock.com; 327 LoopAll/Shutterstock.com; 328 CD Lanzen/ Shutterstock.com

Chapter 8

332 ©iStockphoto.com/ALEAIMAGE, ©iStockphoto.com/Ann Marie Kurtz; 334 ©iStockphoto.com/Jill Chen; 337 ©iStockphoto.com/ camilla wisbauer; 339 Exercises 13 and 14 ©iStockphoto.com/Prill Mediendesigns \& Fotografie; Exercise 15 ©iStockphoto.com/subjug; center left ©iStockphoto.com/Matthew Dixon; center right ©iStockphoto.com/nilgun bostanci; 345 ©iStockphoto.com/Stefano Tiraboschi; 351 Donald Joski/Shutterstock.com; 352 ©iStockphoto.com/ Yury Kosourov; $\mathbf{3 5 3}$ Carlos Caetano/Shutterstock.com; $\mathbf{3 6 0}$ Courtesy of Green Light Collectibles; $\mathbf{3 6 1}$ top right ©iStockphoto.com/wrangel; center left ©iStockphoto.com/ivanastar; bottom left ©iStockphoto.com/ Daniel Cardiff; 362 Eric Isselée/Shutterstock.com; 366 ©iStockphoto.com/Daniel Loiselle

Chapter 9

370 ©iStockphoto.com/Alistair Cotton; 372 baseball Kittisak/ Shutterstock.com; golf ball tezzstock/Shutterstock.com; basketball vasosh/Shutterstock.com; tennis ball UKRID/Shutterstock.com; water polo ball John Kasawa/Shutterstock.com; softball Ra Studio/ Shutterstock.com; volleyball vberla/Shutterstock.com; 376 ©iStockphoto.com/Jill Fromer; 377 ©iStockphoto.com/Janis Litavnieks; 378 Gina Brockett; 379 ©iStockphoto.com/Craig Dingle; 381 Sashkin/Shutterstock.com; 382 ©iStockphoto.com/Brian McEntire; 385 Dwight Smith/Shutterstock.com; 386 Aptyp_koK/Shutterstock.com; 391 Alberto Zornetta/Shutterstock.com; 392 center left ©iStockphoto.com/Tony Campbell; bottom right Eric Isselee/ Shutterstock.com; $\mathbf{3 9 3}$ top right Larry Korhnak; bottom right Photo by Andy Newman; 399 top left ©iStockphoto.com/Jane norton; bottom right ©iStockphoto.com/Krzysztof Zmij; 400 IrinaK/Shutterstock.com; 404 Lim Yong Hian/Shutterstock.com

Chapter 10

408 Varina and Jay Patel/Shutterstock.com, ©iStockphoto.com/Ann Marie Kurtz; 410 ©iStockphoto.com/Franck Boston; 411 Activity $3 a$ ©iStockphoto.com/Manfred Konrad; Activity $3 b$ NASA/JPL-Caltech/ R.Hurt (SSC); Activity 3c and d NASA; bottom right Stevyn Colgan; 413 ©iStockphoto.com/Philippa Banks; 414 ©iStockphoto.com/clotilde hulin; 415 ©iStockphoto.com/Boris Yankov; 420 @iStockphoto.com/ VIKTORIIA KULISH; 421 top right ©iStockphoto.com/Paul Tessier; center left ©iStockphoto.com/subjug, ©iStockphoto.com/Valerie Loiseleux, ©iStockphoto.com/Linda Steward; 426 ©iStockphoto.com/ Petrovich9; 427 top right Dash/Shutterstock.com; center left NASA/ JPL-Caltech/L.Cieza (UT Austin); 431 ©iStockphoto.com/Aliaksandr Autayeu; 432 EugeneF/Shutterstock.com; 433 ©iStockphoto.com/Nancy Louie; 435 ©iStockphoto.com/Dan Moore; 436 @iStockphoto.com/Kais Tolmats; 437 Activity 3a and d Tom C Amon/Shutterstock.com; Activity 3b Olga Gabay/Shutterstock.com; Activity $3 c$ NASA/MODIS Rapid Response/Jeff Schmaltz; Activity $3 f \mathrm{HuHu} /$ Shutterstock.com; Activity $4 a$ PILart/Shutterstock.com; Activity $4 b$ Matthew Cole/ Shutterstock.com; Activity $4 c$ Yanas/Shutterstock.com; Activity $4 e$ unkreativ/Shutterstock.com; 439 top left ©iStockphoto.com/Mark Stay; top center ©iStockphoto.com/Frank Wright; top right
©iStockphoto.com/Evgeniy Ivanov; bottom left ©iStockphoto.com/ Oliver Sun Kim; 440 ©iStockphoto.com/Christian Jasiuk; 441 Microgen/ Shutterstock.com; 442 Activity $1 a$ ©iStockphoto.com/Susan Trigg; Activity $1 b$ ©iStockphoto.com/subjug; Activity $1 c$ ©iStockphoto.com/ camilla wisbauer; Activity 1d ©iStockphoto.com/Joe Belanger; Activity 1e ©iStockphoto.com/thumb; Activity $1 f$ ©iStockphoto.com/David Freund; 443 NASA; 444 center Google and YouTube logos are registered trademarks of Google Inc., used with permission.; 445 top left Elaine Barker/Shutterstock.com; center right ©iStockphoto.com/breckeni; 446 bottom left ©iStockphoto.com/Max Delson Martins Santos; bottom right ©iStockphoto.com/Jan Rysavy; 447 top right BORTEL Pavel/ Shutterstock.com; center right ©iStockphoto.com/breckeni; 451 center left Sebastian Kaulitzki/Shutterstock.com; center right ©iStockphoto.com/Jan Rysavy; 453 ©iStockphoto.com/Boris Yankov; 454 mmutlu/Shutterstock.com; $\mathbf{4 5 8}$ bottom right ©iStockphoto.com/ Eric Holsinger; bottom left TranceDrumer/Shutterstock.com

Appendix A

A0 background ©iStockphoto.com/Björn Kindler; top left ©iStockphoto.com/mika makkonen; top right ©iStockphoto.com/ Hsing-Wen Hsu; A1 top right ©iStockphoto.com/toddmedia; bottom left ©iStockphoto.com/Loretta Hostettler; bottom right NASA; A4 top right ©iStockphoto.com/Hsing-Wen Hsu; bottom left ©iStockphoto.com/ Thomas Kuest; bottom right Lim ChewHow/Shutterstock.com; A5 top right ©iStockphoto.com/Richard Cano; bottom left ©iStockphoto.com/ best-photo; bottom right ©iStockphoto.com/mika makkonen; A6 top right ©iStockphoto.com/Loretta Hostettler; bottom ©iStockphoto.com/ toddmedia; A7 top right LudmilaM/Shutterstock.com; center left and bottom right ©iStockphoto.com/Clayton Hansen; bottom left Billwhittaker at en.wikipedia; A8 and A9 NASA

Cartoon illustrations Tyler Stout

Common Core State Standards

Kindergarten

Counting and Cardinality
Operations and Algebraic Thinking
Number and Operations in Base Ten

Measurement and Data

Geometry

Grade 1

Operations and Algebraic Thinking

Number and Operations in Base Ten

Measurement and Data

Geometry

Grade 2

Operations and Algebraic Thinking

Number and Operations in Base Ten

Measurement and Data

Geometry

- Count to 100 by Ones and Tens; Compare Numbers
- Understand and Model Addition and Subtraction
- Work with Numbers 11-19 to Gain Foundations for Place Value
- Describe and Compare Measurable Attributes; Classify Objects into Categories
- Identify and Describe Shapes
- Represent and Solve Addition and Subtraction Problems
- Understand Place Value for Two-Digit Numbers; Use Place Value and Properties to Add and Subtract
- Measure Lengths Indirectly; Write and Tell Time; Represent and Interpret Data
- Draw Shapes; Partition Circles and Rectangles into Two and Four Equal Shares
- Solve One- and Two-Step Problems Involving Addition and Subtraction; Build a Foundation for Multiplication
- Understand Place Value for Three-Digit Numbers; Use Place Value and Properties to Add and Subtract
- Measure and Estimate Lengths in Standard Units; Work with Time and Money
- Draw and Identify Shapes; Partition Circles and Rectangles into Two, Three, and Four Equal Shares

Grade 3

Operations and Algebraic Thinking

Number and Operations
in Base Ten
Number and OperationsFractions
Measurement and Data

Geometry

Grade 4

Operations and
Algebraic Thinking
Number and Operations
in Base Ten
Number and OperationsFractions
Measurement and Data

Geometry

Grade 5

Operations and Algebraic Thinking
Number and Operations
in Base Ten
Number and OperationsFractions
Measurement and Data

Geometry

- Represent and Solve Problems Involving Multiplication and Division; Solve Two-Step Problems Involving Four Operations
- Round Whole Numbers; Add, Subtract, and Multiply Multi-Digit Whole Numbers
- Understand Fractions as Numbers
- Solve Time, Liquid Volume, and Mass Problems; Understand Perimeter and Area
- Reason with Shapes and Their Attributes
- Use the Four Operations with Whole Numbers to Solve Problems; Understand Factors and Multiples
- Generalize Place Value Understanding; Perform Multi-Digit Arithmetic
- Build Fractions from Unit Fractions; Understand Decimal Notation for Fractions
- Convert Measurements; Understand and Measure Angles
- Draw and Identify Lines and Angles; Classify Shapes
- Write and Interpret Numerical Expressions
- Perform Operations with Multi-Digit Numbers and Decimals to Hundredths
- Add, Subtract, Multiply, and Divide Fractions
- Convert Measurements within a Measurement System; Understand Volume
- Graph Points in the First Quadrant of the Coordinate Plane; Classify Two-Dimensional Figures

Mathematics Reference Sheet

Conversions

U.S. Customary

1 foot $=12$ inches
1 yard $=3$ feet
1 mile $=5280$ feet
1 acre $\approx 43,560$ square feet
1 cup $=8$ fluid ounces
1 pint $=2$ cups
1 quart $=2$ pints
1 gallon $=4$ quarts
1 gallon $=231$ cubic inches
1 pound $=16$ ounces
1 ton $=2000$ pounds
1 cubic foot ≈ 7.5 gallons

Metric

1 centimeter $=10$ millimeters
1 meter = 100 centimeters
1 kilometer $=1000$ meters
1 liter $=1000$ milliliters
1 kiloliter $=1000$ liters
1 milliliter = 1 cubic centimeter
1 liter $=1000$ cubic centimeters
1 cubic millimeter $=0.001$ milliliter
1 gram $=1000$ milligrams
1 kilogram = 1000 grams

Number Properties

Commutative Properties of Addition and Multiplication

$$
\begin{aligned}
& a+b=b+a \\
& a \cdot b=b \cdot a
\end{aligned}
$$

Associative Properties of Addition and Multiplication

$$
\begin{aligned}
& (a+b)+c=a+(b+c) \\
& (a \cdot b) \cdot c=a \cdot(b \cdot c)
\end{aligned}
$$

Addition Property of Zero

$$
a+0=a
$$

Multiplication Properties of Zero and One

$$
\begin{aligned}
& a \cdot 0=0 \\
& a \cdot 1=a
\end{aligned}
$$

Distributive Property:

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& a(b-c)=a b-a c
\end{aligned}
$$

U.S. Customary to Metric

1 inch $=2.54$ centimeters
1 foot ≈ 0.3 meter
1 mile ≈ 1.61 kilometers
1 quart ≈ 0.95 liter
1 gallon ≈ 3.79 liters
1 cup ≈ 237 milliliters
1 pound ≈ 0.45 kilogram
1 ounce ≈ 28.3 grams
1 gallon ≈ 3785 cubic centimeters

Time

1 minute $=60$ seconds
1 hour $=60$ minutes
1 hour $=3600$ seconds
1 year $=52$ weeks

Temperature

$C=\frac{5}{9}(F-32)$
$F=\frac{9}{5} C+32$

Metric to U.S. Customary

1 centimeter ≈ 0.39 inch
1 meter ≈ 3.28 feet
1 kilometer ≈ 0.62 mile
1 liter ≈ 1.06 quarts
1 liter ≈ 0.26 gallon
1 kilogram ≈ 2.2 pounds
1 gram ≈ 0.035 ounce
1 cubic meter ≈ 264 gallons

Properties of Exponents

Product of Powers Property: $a^{m} \cdot a^{n}=a^{m+n}$
Quotient of Powers Property: $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$
Power of a Power Property: $\left(a^{m}\right)^{n}=a^{m n}$

Slope

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }} \\
& =\frac{\text { change in } y}{\text { change in } x} \\
& =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Equations of Lines

Slope-intercept form

$$
y=m x+b
$$

Standard form

$$
a x+b y=c, a, b \neq 0
$$

Point-slope form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Volume

Cylinder

$V=B h=\pi r^{2} h$

Cone

$$
V=\frac{1}{3} B h=\frac{1}{3} \pi r^{2} h
$$

Sphere

$$
V=\frac{4}{3} \pi r^{3}
$$

Power of a Product Property: $(a b)^{m}=a^{m} b^{m}$ Zero Exponents: $a^{0}=1, a \neq 0$
Negative Exponents: $a^{-n}=\frac{1}{a^{n}}, a \neq 0$

Pythagorean Theorem

$a^{2}+b^{2}=c^{2}$

Converse of the Pythagorean Theorem

If the equation $a^{2}+b^{2}=c^{2}$ is true for the side lengths of a triangle, then the triangle is a right triangle.

Distance Formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Angles of Polygons

 Interior Angle Measures of a Triangle$x+y+z=180$

Interior Angle Measures of a Polygon

The sum S of the interior angle measures of a polygon with n sides is $S=(n-2) \cdot 180^{\circ}$.

Exterior Angle Measures of a Polygon

$$
w+x+y+z=360
$$

