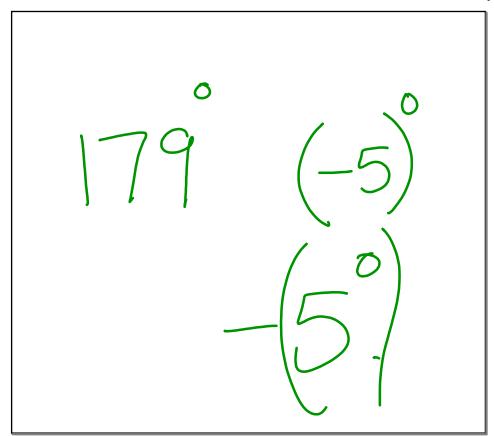
Math 8

Our Goal: To learn about zero and negative exponents

Warm Up: Exponent review


Today's Homework

10.4 Exercises, p.432: 5-27

Previous Homework

You know what I mean, Kaittyn

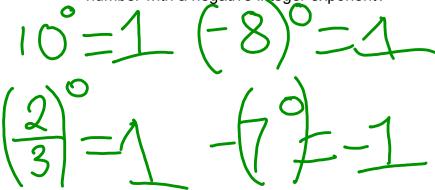
1.8⁴
1.8⁶
2.1

Simplify the expression. Write your answer as a power.

1.
$$\frac{5^4 \cdot 5^2}{5^3}$$

1.
$$\frac{5^4 \cdot 5^2}{5^3}$$
 8 2. $\frac{2^{11} \cdot 2^5}{2^{13}}$ 3. $\frac{4^5 \cdot 4^3}{4^2}$ 4

3.
$$\frac{4^5 \cdot 4^3}{4^2}$$


4.
$$\frac{a^{13} \cdot a^{11}}{a^{12}}$$

5.
$$\frac{c^9 \cdot c^5}{c^{10}}$$

4.
$$\frac{a^{13} \cdot a^{11}}{a^{12}}$$
 5. $\frac{c^9 \cdot c^5}{c^{10}}$ C 6. $\frac{n^7 \cdot n^{14}}{n^{11}}$ n^{11}

Essential Question

How can you evaluate a nonzero number with an exponent of zero? How can you evaluate a nonzero number with a negative integer exponent?

Work with a partner.

a. Copy and complete the table.

Quotient	Quotient of Powers Property	Power
$\frac{5^3}{5^3}$		
$\frac{6^2}{6^2}$		
$\frac{(-3)^4}{(-3)^4}$		
$\frac{(-4)^5}{(-4)^5}$		

b. REPEATED REASONING Evaluate each expression in the first column of the table. What do you notice?

c. How can you use these results to define a^0 where $a \neq 0$?

Zero Exponents

Words For any nonzero number a, $a^0 = 1$. The power 0^0 is *undefined*.

Numbers
$$4^0 = 1$$
 Algebra $a^0 = 1$, where $a \neq 0$

Negative Exponents

Words For any integer n and any nonzero number a, a^{-n} is the reciprocal of a^n .

Numbers
$$4^{-2} = \frac{1}{4^2}$$
 Algebra $a^{-n} = \frac{1}{a^n}$, where $a \neq 0$

Evaluate the expression.

1.
$$\frac{3^6}{3^6}$$

3.
$$\frac{-2^6}{-2^6}$$

6.
$$(-3)^3 \cdot (-3)^3 \left(-\frac{3}{3}\right)^3$$

b.
$$(-8.5)^{-4} \cdot (-8.5)^4$$

c.
$$\frac{2^6}{2^8}$$

Evaluate the expression.

$$\frac{1}{2^{5}} = \frac{1}{32}$$

3.
$$6^{-8} \cdot 6^{8}$$

5.
$$\frac{(-3)^5}{(-2)^6}$$

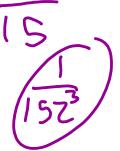
$$-3^{\left(-3\right)^{\circ}} = \frac{1}{-3}$$

$$\frac{1}{5^{7}} \cdot \frac{1}{5^{-4}}$$

$$\frac{1}{5^{-2}} \cdot \frac{1}{5^{-4}}$$

6.
$$\frac{4^5 \cdot 4^{-3}}{4^2}$$

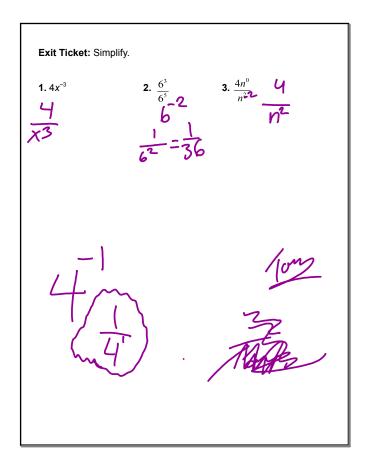
b.
$$\frac{9y^{-3}}{v^5}$$


$$\frac{2}{24} - 2 = \frac{3-4}{2}$$

$$\frac{2}{24} - 2 = \frac{1}{2}$$
Sane
thing
$$\frac{1}{2 \cdot 2 \cdot 2} - 2$$

$$\frac{1}{2} - 2 = \frac{1}{4^2} - \frac{1}{6}$$

Simplify. Write the expression using only positive exponents.


- 7. $8x^{-2}$
- **8.** $b^0 \cdot b^{-10}$
- 9. $\frac{z^6}{15z^9}$ $\frac{3}{2}$

A drop of water leaks from a faucet every second. How many liters of water leak from the faucet in 1 hour?

Drop of water: 50-2 liter

