Math 8
Our Goal: To learn properties of exponents
Warm Up: Exponent review
Today's Homework
10.2 Exercises, p.420: 1-22

Previous Homework
10.1 Exercises, p.414: 1-20

$$
1^{50}=1
$$

$$
\begin{aligned}
0^{5} & =0 \\
& =00000
\end{aligned}
$$

Evaluate the expression.

1. 3^{5}
2. 5^{4}
3. 10^{6}
4. $(-4)^{3}$
5. $(-3)^{2}$
6. $(-2)^{5}$

Essential Question

How can you use inductive reasoning to observe patterns and write general rules involving properties of exponents?

Work with a partner.
a. Copy and complete the table.

Product	Repeated Multiplication Form	Power
$2^{2} \cdot 2^{4}$		
$(-3)^{2} \cdot(-3)^{4}$		
$7^{3} \cdot 7^{2}$		
$5.1^{1} \cdot 5.1^{6}$		
$(-4)^{2} \cdot(-4)^{2}$		
$10^{3} \cdot 10^{5}$		
$\left(\frac{1}{2}\right)^{5} \cdot\left(\frac{1}{2}\right)^{5}$		

b. INDUCTIVE REASONING Describe the pattern in the table.

Then write a general rule for multiplying two powers that have the same base.

$$
a^{m} \cdot a^{n}=a
$$

Work with a partner. Write the expression as a single power. Then write a general rule for finding a power of a power.
a. $\quad\left(3^{2}\right)^{3}=(3 \cdot 3)(3 \cdot 3)(3 \cdot 3)=$
b. $\left(2^{2}\right)^{4}=$ \qquad c. $\left(7^{3}\right)^{2}=$
d. $\left(y^{3}\right)^{3}=$ \square
e. $\left(x^{4}\right)^{2}=$

Work with a partner. Write the expression as the product of two powers. Then write a general rule for finding a power of a product.
a. $(2 \cdot 3)^{3}=(2 \cdot 3)(2 \cdot 3)(2 \cdot 3)=$ \square
b. $(2 \cdot 5)^{2}=$
c. $(5 \cdot 4)^{3}=$
d. $(6 a)^{4}=$ \qquad e. $(3 x)^{2}=$

Simplify the expression. Write your answer as a power.
$2^{1.2^{4} \cdot 2^{3}}$
2. $7^{5} \cdot 7^{7}$
3. $\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{5}$
4. $\left(-\frac{3}{5}\right)^{3} \cdot\left(-\frac{3}{5}\right)^{3}$
5. $x^{5} \cdot x^{11}$

$5+11$

$$
\begin{aligned}
& 3^{4} \cdot 3^{10}=9^{14} \\
& 3^{4} \cdot 3^{10}=3^{44} \\
& t^{8} \cdot t^{4} \cdot t^{1}
\end{aligned}
$$

GO Key Ideas
Product of Powers Property
Words To multiply powers with the same base, add their exponents.
Numbers

$$
4^{2} \cdot 4^{3}=4^{2+3}=4^{5}
$$

Algebra $a^{m} \cdot a^{n}=a^{m+n}$

Power of a Power Property
Words To find a power of a power, multiply the exponents.
Numbers $\left(4^{6}\right)^{3}=4^{6 \cdot 3}=4^{18} \quad$ Algebra $\quad\left(a^{m}\right)^{n}=a^{m n}$

Power of a Product Property
Words To find a power of a product, find the power of each factor and multiply.
Numbers $(3 \cdot 2)^{5}=3^{5} \cdot 2^{5}$
Algebra $(a b)^{m}=a^{m} b^{m}$
a. $2^{4} \cdot 2^{5}$
b. $-5 \cdot(-5)^{6}=$
c. $x^{3} \cdot x^{7}=$

$$
\begin{aligned}
& { }^{n+m}=2 x \cdot 2 x \cdot 2 x \\
& =2^{\frac{3}{3}} x^{3} \\
& =8 x^{3} \\
& (3 x y)^{2}=3 x y \cdot 3 x y \\
& \begin{array}{l}
=3^{2} x^{2} y^{2} \\
=9 x^{2} y^{2}
\end{array}
\end{aligned}
$$

Simplify the expression.

1. $6^{2} \cdot 6^{4}$
2. $\left(-\frac{1}{2}\right)^{3} \cdot\left(-\frac{1}{2}\right)^{6}$
3. $z \cdot z^{12}$
4. $\left(4^{4}\right)^{3}$
5. $\left(y^{2}\right)^{4}$
6. $\left((-4)^{3}\right)^{2}$
7. $(5 y)^{4}$
8. $(a b)^{5}$
9. $(0.5 m n)^{2}$

Details

A gigabyte (GB) of computer storage space is 2^{30} bytes. The details of a computer are shown. How many bytes of total storage space does the computer have?
(A) 2^{34}
(B) 2^{36}
(C) 2^{180}
(D) 128^{30}

Exit Ticket: Simplify.

$$
5^{3} \cdot 5^{4}
$$

$(-3 x)^{3}$

