Math 8

Our Goal: To learn to find the surface areas and volumes of similar solids

p354-16

Tell whether the ratios are equivalent.

1. $\frac{35}{20}, \frac{7}{4}$
2. $\frac{3}{8}, \frac{32}{12}$
3. $\frac{4}{8}, \frac{20}{24}$
4. $\frac{9}{2}, \frac{27}{6}$
5. $\frac{14}{18}, \frac{12}{21}$
6. $\frac{14}{20}, \frac{21}{30}$

Essential Question

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change?

Which cylinder is similar to Cylinder A?

Cylinder B

The cones are similar. Find the missing slant height ℓ.

GO Key Idea
Volumes of Similar Solids
When two solids are similar, the ratio of their volumes is equal to the cube of the ratio of their corresponding linear measures.

$$
\frac{\text { Volume of } \mathrm{A}}{\text { Volume of } \mathrm{B}}=\left(\frac{a}{b}\right)^{3}
$$

The solids are similar. Find the volume of the red solid.
Round your answer to the nearest tenth.
5.

6.

Volume $=288 \mathrm{~cm}^{3}$

GO Key Ideas
Linear Measures

Surface Areas of Similar Solids When two solids are similar, the ratio of their surface areas is equal to the square of the ratio of their corresponding linear measures.

$\frac{\text { Surface Area of A }}{\text { Surface Area of B }}=\left(\frac{a}{b}\right)^{2}$

The pyramids are similar. What is the surface area of Pyramid A?

The solids are similar. Find the surface area of the red solid. Round your answer to the nearest tenth.
3.

Surface Area $=608 \mathrm{~m}^{2}$
4.

Surface Area $=110 \mathrm{~cm}^{2}$

