## Math 8

Our Goal: To learn to find cube roots
Warm Up: Please have your homework out for checking.
Thank you.
Today's participation measures

- Classwork: 7.2 Practice A handout
- Homework: 7.2 Exercises, p.298: 3-21 (multiples of 3)
- iready is due tomorrow (the snow day did not make this a "short" week)


## Previous homework

7.1 Extra Practice handouts

Find the square root(s).

1. $\sqrt{36}$
2. $-\sqrt{64}$
3. $\sqrt{\frac{49}{81}}$
4. $-\sqrt{225}$
5. $\sqrt{121}$
6. $\sqrt{\frac{144}{169}}$ Square rots.

$333=27$

$\square$

Find each cube root.
a. $\sqrt[3]{8}$

b. $\sqrt[3]{-27}$

c. $\sqrt[3]{\frac{1}{64}}$


Evaluate each expression.
a. $2 \sqrt[3]{-216}$
b. $(\sqrt[3]{125})^{3}$

Find the cube root.

1. $\sqrt[3]{1}$
2. $\sqrt[3]{-343}$
3. $\sqrt[3]{-\frac{27}{1000}}$

Evaluate the expression.
4. $18-4 \sqrt[3]{8}$
5. $(\sqrt[3]{-64})^{3}+43$
6. $5 \sqrt[3]{512}-19$


Evaluate $\frac{x}{4}+\sqrt[3]{\frac{x}{3}}$ when $x=192$.

Evaluate the expression for the given value of the variable.
7. $\sqrt[3]{8 y}+y, y=64$
8. $2 b-\sqrt[3]{9 b}, b=-3$

Find the surface area of the baseball display case.


$$
\text { Volume - } 125 \text { in. }^{3}
$$

9. The volume of a music box that is shaped like a cube is 512 cubic centimeters. Find the surface area of the music box.


|  |  |
| :--- | :--- |
|  | Explain the difference between $\sqrt{64}$ and $\sqrt[3]{64}$. |
|  |  |
|  |  |

