Algebra 1

Our Goal: To learn to graph quadratic functions of the form $f(x)=a(x-p)(x-q)$
Warm Up: Check and discuss homework
Today's Homework
8.5 Exercises, p.455-456: 6-72 (multiples of 6)
that's 6,12,18,24,30,36,42,48,54,60,66,72
(graph paper online, if helpful)
Previous Homework
8.4 Exercises, p.446-448: 6-66 (multiples of 6)
that's 6,12,18,24,30,36,42,48,54,60,66
2. Find $2011^{2}-2010^{2}$?
A) 2010
B) 2011
C) 4021
D) 4001

Factor the expression.

$$
(2 x+7)(2 x-7) \quad(x+4)^{2 \cdot x^{2}+6 x+8}(x+2)
$$

3. $2 a^{2}-9 a-5$
$(2 a+1)(a-5)$
4. $a^{2}+5 a+4$ $(a+4)(a+1)$
5. $x^{2}-3 x$

$x(x-3)$
$(2 t-1)(t+4)$

$$
\begin{aligned}
& y=-(x+8)^{2}-(-x+8)^{2} \\
& \frac{1}{\text { vertexis }(0,-8)} \\
& V:(-8,0)
\end{aligned}
$$

$$
8+x \quad 8-x
$$

Write an equation in slope-intercept form of the line shown.

1.

2.

G. Core Concept

Graphing $f(x)=a(x-p)(x-q)$

- The x-intercepts are p and q. 1
- The axis of symmetry is halfway between $(p, 0)$ and $(q, 0)$. So, the axis of symmetry is $x=\frac{p+q}{2}$.
- The graph opens up when $a>0$, and the graph opens down when $a<0$.

Graph $f(x)=-(x+1)(x-5)$. Describe the domain and range.

Graph $f(x)=2 x^{2}-8$. Describe the domain and range.

Graph the quadratic function. Label the vertex, axis of symmetry, and \underline{x}-intercepts. Describe the domain and range of the function.
() ${ }^{(x)=(x+2)(x-3)}(2.6)(-2.5)^{2 . g(x)=-2(x-4)(x+1)}$

G) Core Concept

Factors and Zeros
For any factor $x-n$ of a polynomial, n is a zero of the function defined by the polynomial.

Find the zeros of $f(x)=(x-1)(x+2)$.

$$
x \operatorname{sint}: \quad-2
$$

Find the zeros of each function.
a. $f(x)=-2 x^{2}-10 x-12$
b. $h(x)=(x-1)\left(x^{2}-16\right)$

$$
\begin{aligned}
& h(x)=(x-1)(x-4)(x+4) \\
& \text { zoos: } 1,4,-4
\end{aligned}
$$

Find the zeros) of the function.
4. $f(x)=(x-6)(x-1)$

6,1
6. $h(x)=x\left(x^{2}-1\right)$

$$
\begin{gathered}
\int_{5 . g(x)=3 x^{2}-12 x+12} \\
3\left(x^{2}-4 x+4\right) \\
3(x-2)(x-2)
\end{gathered}
$$

$$
\text { zeros: } 2
$$

Use zeros to graph $h(x)=x^{2}-2 x-3$.

The graph represents a cubic function. Write the function.

The zeros of a cubic function are $-3,-1$, and 1 . The graph of the function passes through the point $(0,-3)$. Write the function.

Exit Ticket: Use zeros to sketch the graph of $f(x)=-(x+2)(x-3)$

$$
\begin{array}{cc}
x & -(8+x) \\
8+x & 8-x \\
-(8+x) \\
8-x
\end{array}
$$

