Algebra 1

Our Goal: To learn to graph quadratic functions of the form $f(x)=a(x-h)^{2}+k$

Warm Up: Quiz discussion, vertex of parabola review

Today's Homework

8.4 Exercises, p.446-448: 6-66 (multiples of 6)

$$
\text { that's } 6,12,18,24,30,36,42,48,54,60,66
$$

Previous Homework
None

$\Gamma_{\text {Findstacoene }}$ $\begin{aligned} & \text { Find the } \\ & \text { 1. } y=x^{2} \end{aligned}$	
	$2 a^{2}-2(1 / 2,-6.2)$
	$\left.(-1 / 6)^{1 / 3}\right)$
	$\frac{-b}{2 a}=\frac{-1}{6}$
	$3\left(-\frac{1}{6}\right)+\left(\frac{-1}{6}\right)+$
	$3-\frac{6}{36}+\frac{72}{36}$
	36 36 $9 \div 3$ 36 63
	$\frac{69}{36} \div 3$

Essential Question

How can you describe the graph of $f(x)=a(x-h)^{2}$?

Work with a partner. Sketch the graphs of the functions in the same coordinate plane. How does the value of h affect the graph of $y=a(x-h)^{2} ?$
a. $f(x)=x^{2}$ and $g(x)=(x-2)^{2}$
b. $f(x)=2 x^{2}$ and $g(x)=2(x-2)^{2}$

Work with a partner. Sketch the graphs of the functions in the same coordinate plane. How does the value of h affect the graph of $y=a(x-h)^{2} ?$
a. $f(x)=-x^{2}$ and $g(x)=-(x+2)^{2}$
b. $f(x)=-2 x^{2}$ and $g(x)=-2(x+2)^{2}$

G) Core Concept

Even and Odd Functions
A function $y=f(x)$ is even when $f(-x)=f(x)$ for each x in the domain of f.
The graph of an even function is symmetric about the y-axis
A function $y=f(x)$ is odd when $f(-x)=-f(x)$ for each x in the domain of f.
The graph of an odd function is symmetric about the origin. A graph is symmetric
about the origin when it looks the same after reflections in the x-axis and then in
the y-axis.
a function is even, 16 opposixeinpuls give the some outputs.
A Function is odd if opposite impers give Apposite outputs.
Omefunctions are neither.
If a function is even ionill
fold on the x-axis
If the function is odd io

G) Core Concept

Graphing $f(x)=a(x-h)^{2}$

- When $h>0$, the graph of $f(x)=a(x-h)^{2}$ is a horizontal translation h units right of the graph of $f(x)=a x^{2}$.
- When $h<0$, the graph of $f(x)=a(x-h)^{2}$ is a horizontal translation $|h|$ units left of the graph of $f(x)=a x^{2}$.
The vertex of the graph of $f(x)=a(x-h)^{2}$ is $(h, 0)$, and the axis of symmetry is $x=h$.

Graph $g(x)=\frac{1}{2}(x-4)^{2}$. Compare the graph to the graph of $f(x)=x^{2}$.

Graph the function. Compare the graph to the graph of $f(x)=x^{2}$.
4. $g(x)=2(x+5)^{2}$
5. $h(x)=-(x-2)^{2}$

Core Concept

Graphing $f(x)=a(x-h)^{2}+k$
The vertex form of a quadratic function is $f(x)=a(x-h)^{2}+k$, where $a \neq 0$. The graph of $f(x)=a(x-h)^{2}+k$ is a translation h units horizontally and k units vertically of the graph of $f(x)=a x^{2}$.
The vertex of the graph of $f(x)=a(x-h)^{2}+k$ is (h, k),
 and the axis of symmetry is $x=h$.

$$
\text { Graph } g(x)=-2(x+2)^{2}+3 \text {. Compare the graph to the graph of }
$$

$$
f(x)=x^{2} .
$$

Consider function g in Example 3. Graph $f(x)=g(x+5)$.

Graph the function. Compare the graph to the graph of $f(x)=\boldsymbol{x}^{2}$.
6. $g(x)=3(x-1)^{2}+6$
7. $h(x)=\frac{1}{2}(x+4)^{2}-2$
8. Consider function g in Example 3. Graph $f(x)=g(x)-3$.

$$
\begin{aligned}
& \text { Water fountains are usually designed to give a specific visual effect. } \\
& \text { For example, the water fountain shown consists of streams of water } \\
& \text { that are shaped like parabolas. Notice how the streams are designed } \\
& \text { to land on the underwater spotlights. Write and graph a quadratic } \\
& \text { function that models the path of a stream of water with a maximum } \\
& \text { height of } 5 \text { feet, represented by a vertex of }(3,5) \text { landing on a spotlight } \\
& 6 \text { feet from the water jet, represented b, } 6,0) .
\end{aligned}
$$

9. WHAT IF? The vertex is $(3,6)$. Write and graph a quadratic function that models the path.

Exit Ticket: Given $f(x)=\frac{1}{2}(x+8)^{2}+4$, tell what you know about the function and sketch its graph.

