Algebra 1

Our Goal: To learn to solve quadratic equations using the Quadratic Formula

Warm Up: Check and discuss homework

Today's Homework

9.5 Exercises, p.521: 10-22 (evens)

Previous Homework

9.4 Exercises, p.511: 12-32 (evens)

Solve the inequality. Graph the solution, if possible.

1.
$$3|2w-9|-11 \ge 4$$

2.
$$-4|3+3u|-6>-14$$

3.
$$7|-f-2|-8<6$$

4.
$$\frac{3}{2}|5v-5|+3 \ge 9$$

5.
$$|x-5| < 12$$

6.
$$|n+6| < 0$$

$$ax^{2}+bx+c=0$$

$$-b\pm \sqrt{b^{2}-4ac}$$
 $x=\frac{2}{2}$

Quadratic Formula

The real solutions of the quadratic equation $ax^2 + bx + c = 0$ are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic Formula

where $a \neq 0$ and $b^2 - 4ac \geq 0$.

Solve $2x^2 - 5x + 3 = 0$ using the Quadratic Formula.

Solve the equation using the Quadratic Formula. Round your solutions to the nearest tenth, if necessary.

1.
$$x^2 - 6x + 5 = 0$$

2.
$$\frac{1}{2}x^2 + x - 10 = 0$$

3.
$$-3x^2 + 2x + 7 = 0$$

4.
$$4x^2 - 4x = -1$$

G Core Concept

Interpreting the Discriminant

$$b^2 - 4ac > 0$$

- · two real solutions
- one real solution
- · no real solutions no x-intercepts

 $b^2 - 4ac < 0$

- one x-intercept
- two x-intercepts

$$\begin{array}{c} x^{2} - 5x + 3 = 0 \\ x = -\frac{b \pm \sqrt{5^{2} - 4ac}}{2a} \\ x = -(-5) \pm \sqrt{-5^{2} - 4(1)(3)} \\ x = 5 \pm \sqrt{25 - 12} \\ x = 5 \pm \sqrt{13} \\ x = \frac{5 \pm \sqrt{13}}{2} \\$$

$$5x^{2}-4x-2=0$$

$$X = -6 \pm \sqrt{6^{2}-4ac}$$

$$X = 4 \pm \sqrt{16+40}$$

$$X = 4 \pm \sqrt{16}$$

$$X = 4 \pm \sqrt{14}$$

Determine the number of real solutions of the equation.

7.
$$-x^2 + 4x - 4 = 0$$

8.
$$6x^2 + 2x = -1$$

9.
$$\frac{1}{2}x^2 = 7x - 1$$

Find the number of x-intercepts of the graph of the function.

10.
$$y = -x^2 + x - 6$$

11.
$$y = x^2 - x$$

10.
$$y = -x^2 + x - 6$$
 11. $y = x^2 - x$ **12.** $f(x) = x^2 + 12x + 36$

Methods for Solving Quadratic Equations

Method	Advantages	Disadvantages
Factoring (Lessons 7.5–7.8)	Straightforward when the equation can be factored easily	Some equations are not factorable.
Graphing (Lesson 9.2)	Can easily see the number of solutions Use when approximate.	May not give exact solutions
	Use when approximate solutions are sufficient.	
	 Can use a graphing calculator 	
Using Square Roots (Lesson 9.3)	• Use to solve equations of the form $x^2 = d$.	Can only be used for certain equations
Completing the Square (Lesson 9.4)	• Best used when $a = 1$ and b is even	May involve difficult calculations
Quadratic Formula (Lesson 9.5)	Can be used for any quadratic equation	Takes time to do calculations
	Gives exact solutions	

Solve the equation using any method. Explain your choice of method.

a.
$$x^2 - 10x = 1$$

b.
$$2x^2 - 13x - 24 = 0$$

c.
$$x^2 + 8x + 12 = 0$$

Solve the equation using any method. Explain your choice of method.

13.
$$x^2 + 11x - 12 = 0$$

14.
$$9x^2 - 5 = 4$$

15.
$$5x^2 - x - 1 = 0$$

16.
$$x^2 = 2x - 5$$