Algebra 1

Our Goal: To learn to solve quadratic equations using the Quadratic Formula

Warm Up: Check and discuss homework
Today's Homework
9.5 Exercises, p.521: 10-22 (evens)

Previous Homework
9.4 Exercises, p.511: 12-32 (evens)

Solve the inequality. Graph the solution, if possible.

1. $3|2 w-9|-11 \geq 4$
2. $-4|3+3 u|-6>-14$
3. $7|-f-2|-8<6$
4. $\frac{3}{2}|5 v-5|+3 \geq 9$
5. $|x-5|<12$
6. $|n+6|<0$

G) Core Concept

Quadratic Formula

The real solutions of the quadratic equation $a x^{2}+b x+c=0$ are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \text { Quadratic Formula }
$$

where $a \neq 0$ and $b^{2}-4 a c \geq 0$.

Solve $2 x^{2}-5 x+3=0$ using the Quadratic Formula.

$$
\begin{aligned}
& 6 \\
& -5 \\
& (-2,-3)
\end{aligned}
$$

Solve the equation using the Quadratic Formula. Round your solutions to the nearest tenth, if necessary.

1. $x^{2}-6 x+5=0$
2. $\frac{1}{2} x^{2}+x-10=0$
3. $-3 x^{2}+2 x+7=0$
4. $4 x^{2}-4 x=-1$

G) Core Concept

Interpreting the Discriminant
$b^{2}-4 a c>0$
$b^{2}-4 a c=0$

- one real solution
- one x-intercept
$b^{2}-4 a c<0$

- no real solutions
- no x-intercepts

$$
\begin{aligned}
& x^{2}-5 x+3=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-5) \pm \sqrt{-5^{2}-4(1)(3)}}{2(1)} \\
& x=\frac{5 \pm \sqrt{25-4(3)}}{2} \\
& x=\frac{5 \pm \sqrt{25-12}}{2} \\
& \frac{x=5 \pm \sqrt{13}}{2} \\
& x=\frac{5 \pm \sqrt{13}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 5 x^{2}-4 x-2=0 \\
& x=\frac{-6 \pm \sqrt{6^{2}-4 c}}{2 a} \\
& x=\frac{4 \pm \sqrt{16+40}}{10} \\
& x=\frac{4 \pm \sqrt{56}}{10} \\
& x=\frac{4 \pm \sqrt{4} \cdot \sqrt{14}}{10} \\
& x=\frac{4 \pm 2 \cdot \sqrt{14}}{10} \\
& x=\frac{2 \pm \sqrt{14}}{5}
\end{aligned}
$$

Determine the number of real solutions of the equation.
7. $-x^{2}+4 x-4=0$
8. $6 x^{2}+2 x=-1$
9. $\frac{1}{2} x^{2}=7 x-1$

Find the number of x-intercepts of the graph of $y=2 x^{2}+3 x+9$.

Find the number of x-intercepts of the graph of the function.
10. $y=-x^{2}+x-6$
11. $y=x^{2}-x$
12. $f(x)=x^{2}+12 x+36$

Methods for Solving Quadratic Equations

Method	Advantages	Disadvantages
Factoring (Lessons 7.5-7.8)	- Straightforward when the equation can be factored easily	- Some equations are not factorable.
Graphing (Lesson 9.2)	- Can easily see the number of solutions - Use when approximate solutions are sufficient. - Can use a graphing calculator	- May not give exact solutions
Using Square Roots (Lesson 9.3)	- Use to solve equations of the form $x^{2}=d$.	- Can only be used for certain equations
Completing the Square (Lesson 9.4)	- Best used when $a=1$ and b is even	- May involve difficult calculations
Quadratic Formula (Lesson 9.5)	- Can be used for any quadratic equation	- Takes time to do calculations
- Gives exact solutions		

Solve the equation using any method. Explain your choice of method.
a. $x^{2}-10 x=1$
b. $2 x^{2}-13 x-24=0$
c. $x^{2}+8 x+12=0$

Solve the equation using any method. Explain your choice of method.
13. $x^{2}+11 x-12=0$
14. $9 x^{2}-5=4$
15. $5 x^{2}-x-1=0$
16. $x^{2}=2 x-5$

