Algebra 1
Our Goal: To learn to solve quadratic equations by completing the square

Warm Up: Quiz discussion
Today's Homework
9.4 Exercises, p.511: 12-32 (evens)

Previous Homework iready, if needed

$$
\begin{aligned}
& h=-16 t^{2}+44 t+5 \\
& 38=-16 t^{2}+44 t+5 \\
&-35-35 \\
& 0=-16 t^{2}+44 t-30 \\
& 0=-8 t^{2}+22 t-15 \\
& 0=\underbrace{8 t^{2}-22 t+15} \\
&(t)-22
\end{aligned}
$$

Core Concept

Completing the Square

Words To complete the square for an expression of the form $x^{2}+b x$, follow these steps.
Step 1 Find one-half of b, the coefficient of x.
Step 2 Square the result from Step 1.
Step 3 Add the result from Step 2 to $x^{2}+b x$.
Factor the resulting expression as the square of a binomial.
Algebra $\quad x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}$

Solve $x^{2}-16 x=-15$ by completing the square.

Solve $2 x^{2}+20 x-8=0$ by completing the square.

Solve $x^{2}+5 x=1$ by completing the square.

$$
\left\{\begin{aligned}
& \sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{29}{4}} \\
& x+\frac{5}{2}= \pm \sqrt{\frac{29}{4}} \\
& x^{2}+5 x+\frac{\sqrt{29}}{\sqrt{24}} \\
& x+\frac{ \pm \sqrt{29}}{2} \\
& x=-\frac{5}{2} \pm \frac{\sqrt{29}}{2} \\
&=\frac{-5 \pm \sqrt{29}}{2}
\end{aligned}\right.
$$

Find the maximum value of $y=-x^{2}+2 x+7$.

Which of the functions could be represented by the graph? Explain.

$$
f(x)=-\frac{1}{2}(x+4)^{2}+8
$$

$$
g(x)=-(x-5)^{2}+9
$$

$$
m(x)=(x-3)(x-12)
$$

$$
p(x)=-(x-2)(x-8)
$$

The function $y=-16 x^{2}+96 x$ represents the height y (in feet) of a model rocket x seconds after it is launched. (a) Find the maximum height of the rocket. (b) Find and interpret the axis of symmetry.

You decide to use chalkboard paint to create a chalkboard on a door. You want the chalkboard to cover 6 square feet and to have a uniform border, as shown. Find the width of the border to the nearest inch.

$$
\begin{gathered}
\frac{2 x^{2}+2 x}{2}=\frac{3}{2} \\
x^{2}+x=\frac{3}{2} \\
x^{2}+x+\frac{1}{4}=\frac{3}{2}+\frac{1}{4} \\
\left(x+\frac{1}{2}\right)^{2}=\frac{7}{4} \\
x+\frac{1}{2}=\frac{-\sqrt{7}}{7} \sqrt{7} \\
x=-\frac{1}{2}-\frac{\sqrt{7}}{2} \\
x=\frac{-1 \pm \sqrt{2}}{2}
\end{gathered}
$$

