Algebra 1

Our Goal: To learn about properties of square roots
Warm Up: simplifying square roots
Today's Homework:
9.1 Textbook Exercises, p.485-486:

14-28 (evens), 40-60 (multiples of 4), and 75, 80
(that's $14,16,18,20,22,24,26,28,40,44,48,52,56,60,75,80$)
iready due Friday, if needed
Previous Homework
None

Simplify.

1. $\sqrt{16}$
2. $\sqrt{64}$
3. $\sqrt{225}$
4. $\sqrt{2025}$
5. $\sqrt{57,600}$
6. $\sqrt{36}$
7. $\sqrt{400}$
8. $\sqrt{4}$
9. $\sqrt{3600}$

Determine whether the function represents exponential growth or exponential decay. Identify the percent rate of change.

1. $y=5(0.7)^{t}$
2. $y=49(1.04)^{t}$
3. $r(t)=0.5(0.95)^{t}$
4. $g(t)=3\left(\frac{4}{5}\right)^{t}$

Core Concept

Linear, Exponential, and Quadratic Functions

Linear Function

$$
y=m x+b
$$

Exponential Function

$$
y=a b^{x}
$$

Quadratic Function $y=a x^{2}+b x+c$

Core Concept

Differences and Ratios of Functions

You can use patterns between consecutive data pairs to determine which type of function models the data. The differences of consecutive y-values are called first differences. The differences of consecutive first differences are called second differences.

- Linear Function The first differences are constant.
- Exponential Function Consecutive y-values have a common ratio.
- Quadratic Function The second differences are constant.

In all cases, the differences of consecutive x-values need to be constant.

Tell whether each table of values represents a linear, an exponential, or a quadratic function.
a.

x	-3	-2	-1	0	1
y	11	8	5	2	-1

b.

x	-2	-1	0	1	2
y	1	2	4	8	16

c.

x	-2	-1	0	1	2
y	-1	-2	-1	2	7

G) Core Concept

Product Property of Square Roots

Words The square root of a product equals the product of the square roots of the factors.

Numbers $\sqrt{9 \cdot 5}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
Algebra $\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$, where $a, b \geq 0$

Simplify the square roots.
$\sqrt{49}$
$\sqrt{50}$

Simplify the expression.

1. $\sqrt{24}$
2. $-\sqrt{80}$
3. $\sqrt{49 x^{3}}$
4. $\sqrt{75 n^{5}}$

Core Concept

Quotient Property of Square Roots
Words The square root of a quotient equals the quotient of the square roots of the numerator and denominator.

Numbers $\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{\sqrt{4}}=\frac{\sqrt{3}}{2} \quad$ Algebra $\quad \sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$, where $a \geq 0$ and $b>0$

Simplify the expression.
5. $\sqrt{\frac{23}{9}}$
6. $-\sqrt{\frac{17}{100}}$
7. $\sqrt{\frac{36}{z^{2}}}$
8. $\sqrt{\frac{4 x^{2}}{64}}$
9. $\sqrt[3]{54}$
10. $\sqrt[3]{16 x^{4}}$
11. $\sqrt[3]{\frac{a}{-27}}$
12. $\sqrt[3]{\frac{25 c^{7} d^{3}}{64}}$

$$
\begin{array}{ll}
=\sqrt{\frac{1}{2}} & \sqrt{\frac{2}{3}} \\
=\frac{\sqrt{1}}{\sqrt{2}} & \frac{\sqrt{2}}{\sqrt{3}} \\
=\frac{1 \sqrt{2}}{\sqrt{2} \sqrt{2}} & \frac{\sqrt{2} \sqrt{3}}{\sqrt{3} \sqrt{3}} \\
=\frac{\sqrt{3}}{2} & \frac{\sqrt{6}}{\sqrt{9}} \frac{\sqrt{6}}{3}
\end{array}
$$

$$
\begin{aligned}
& \frac{1}{1+\sqrt{2}} \cdot \frac{1-\sqrt{2}}{1-\sqrt{2}} \\
& \frac{1-\sqrt{2}}{(1+\sqrt{2})(1-\sqrt{2})}= \\
& \frac{1-\sqrt{2}}{1-\sqrt{2}+\sqrt{2}-2}=\frac{1-\sqrt{2}}{-1} \\
& =-1+\sqrt{2}
\end{aligned}
$$

$\left.\begin{array}{l}\frac{8(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} \\ \frac{(\sqrt{3})^{2}+\sqrt{3}+\sqrt{3}-1^{2}}{8_{3}^{2} \sqrt{3}+8^{2}} \\ 2 \div 2\end{array}=4 \sqrt{3}+4\right)$.

$$
\frac{\frac{48 \sqrt{3}+1}{2}}{2} \quad \frac{4+1}{8}
$$

Simplify the expression.
13. $\frac{1}{\sqrt{5}}$
14. $\frac{\sqrt{10}}{\sqrt{3}}$
15. $\frac{7}{\sqrt{2 x}}$
16. $\sqrt{\frac{2 y^{2}}{3}}$
17. $\frac{5}{\sqrt[3]{32}}$
18. $\frac{8}{1+\sqrt{3}}$
19. $\frac{\sqrt{13}}{\sqrt{5}-2}$
20. $\frac{12}{\sqrt{2}+\sqrt{7}}$

The ratio of the length to the width of a golden rectangle is $(1+\sqrt{5}): 2$. The dimensions of the face of the Parthenon in Greece form a golden rectangle. What is the height h of the Parthenon?

$$
\begin{aligned}
& \sqrt{5} \sqrt{3}-\sqrt{5} \cdot \sqrt{75} \\
& \sqrt{15}-\sqrt{5} \sqrt{25} \\
& 1 \sqrt{15}-5 \sqrt{15} \\
& -4 \sqrt{15} \quad x-5 x
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{8}+\sqrt{\frac{1}{2}}-\sqrt{2} \\
& 2 \sqrt{2}+\frac{\pi}{2} \sqrt{2}-\sqrt{2} \\
& 2 \sqrt{2}+\frac{\sqrt{2}}{2}-\sqrt{2} \\
& \sqrt{2}\left(2+\frac{1}{2}-1\right) \\
& \frac{3 \sqrt{2}}{2} \begin{array}{l}
1 \frac{1}{2} \\
1+\frac{1}{2}
\end{array} \\
& \hline
\end{aligned}
$$

Simplify $\sqrt{5}-5 \sqrt{13}-8 \sqrt{5}$

