Algebra 1

Our Goal: To learn about properties of square roots
Warm Up: Test discussion

Today's Homework:
9.1 Textbook Exercises, p.485-486:

14-28 (evens), 40-60 (multiples of 4), and 75, 80
(that's $14,16,18,20,22,24,26,28,40,44,48,52,56,60,75,80$)
iready due today, if needed
Previous Homework

Every, positive \# has

 2 square rants, 1 positive and one negative.$\sqrt{36}$
$-\sqrt{36}$
$\sqrt{36}$
r36
$\pm \sqrt{36}$ 136
$\sqrt{36}$
\because

Simplify.

Determine whether the function represents exponential growth or exponential decay. Identify the percent rate of change.

1. $y=5(0.7)^{t}$
2. $y=49(1.04)^{t}$
3. $r(t)=0.5(0.95)^{t}$
4. $g(t)=3\left(\frac{4}{5}\right)^{t}$

G) Core Concept

Linear, Exponential, and Quadratic Functions

Linear Function

$$
y=m x+b
$$

Exponential Function
$y=a b^{x}$
Quadratic Function
$y=a x^{2}+b x+c$

G) Core Concept

Differences and Ratios of Functions

You can use patterns between consecutive data pairs to determine which type of function models the data. The differences of consecutive y-values are called first differences. The differences of consecutive first differences are called second differences.

- Linear Function The first differences are constant.
- Exponential Function Consecutive y-values have a common ratio.
- Quadratic Function The second differences are constant.

In all cases, the differences of consecutive x-values need to be constant.

Tell whether each table of values represents a linear, an exponential, or a quadratic function.
a.

x	-3	-2	-1	0	1
\boldsymbol{y}	11	8	5	2	-1

b.

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	1	2	4	8	16

c.

\boldsymbol{x}	-2	-1	0	1	2
\boldsymbol{y}	-1	-2	-1	2	7

(5) Core Concept

Product Property of Square Roots
Words The square root of a product equals the product of the square roots of the factors.
Numbers $\sqrt{9 \cdot 5}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}$
Algebra $\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$, where $a, b \geq 0$
$\sqrt{\square}^{- \text {the radical }}$ Rule 1: make the radicand as small as possible. (no square The factors) radicand

Rule 2: no fractions in the radicand.
Rule 3: no radicals in the denominator.

Simplify the square roots.
$\sqrt{49}$

$$
\begin{aligned}
& \sqrt{50} \\
& \frac{\sqrt{25}}{\sqrt{25 \cdot 2}} \\
& \sqrt{25} \cdot \sqrt{2} \\
& 5 \cdot \sqrt{2} \\
& \begin{array}{r}
\sqrt{50}=\begin{array}{r}
\sqrt{2} \\
+\sqrt{2}+\sqrt{2} \\
\\
+\sqrt{2}+\sqrt{2}
\end{array}
\end{array}
\end{aligned}
$$

Simplify the expression.
5. $\sqrt{\frac{23}{9}} \frac{\sqrt{23}}{3}$
6. $-\sqrt{\frac{17}{100}}$
$-\frac{\sqrt{17}}{10}$
7. $\begin{aligned} & \sqrt{\frac{36}{z^{2}}} \\ & \frac{6}{2}\end{aligned}$
11. $\sqrt[3]{\frac{a}{-27}}$
12. $\sqrt[3]{\frac{25 c^{7} d^{3}}{64}}$

Simplify the expression.
$\frac{1 \cdot \sqrt{5}}{\sqrt{5} \cdot \sqrt{5}}=\frac{1}{\sqrt{5}}=\frac{14}{\sqrt{25}}=\frac{\sqrt{10}}{\sqrt{3}}=\frac{\sqrt{5}}{5}{ }^{15 \cdot \frac{7}{\sqrt{2 x}}}$
16. $\sqrt{\frac{2 y^{2}}{3}}$
17. $\frac{5}{\sqrt[3]{32}}$
18. $\frac{8}{1+\sqrt{3}}$
19. $\frac{\sqrt{13}}{\sqrt{5}-2}$
20. $\frac{12}{\sqrt{2}+\sqrt{7}}$

The ratio of the length to the width of a golden rectangle is $(1+\sqrt{5}): 2$. The dimensions of the face of the Parthenon in Greece form a golden rectangle. What is the height h of the Parthenon?

Simplify $\sqrt{5}(\sqrt{3}-\sqrt{75})$.

Simplify $\sqrt{5}-5 \sqrt{13}-8 \sqrt{5}$

Simplify the expression.
23. $3 \sqrt{2}-\sqrt{6}+10 \sqrt{2}$
24. $4 \sqrt{7}-6 \sqrt{63}$
25. $4 \sqrt[3]{5 x}-11 \sqrt[3]{5 x}$
26. $\sqrt{3}(8 \sqrt{2}+7 \sqrt{32})$
27. $(2 \sqrt{5}-4)^{2}$
28. $\sqrt[3]{-4}(\sqrt[3]{2}-\sqrt[3]{16})$

