Algebra 1 Our Goal: To learn about properties of square roots Warm Up: Test discussion <u>Today's Homework:</u> 9.1 Textbook Exercises, p.485-486: 14-28 (evens), 40-60 (multiples of 4), and 75, 80 (that's 14,16,18,20,22,24,26,28,40,44,48,52,56,60,75,80) ready due today, if needed Previous Homework Every positive # has 2 square roots, 1 positive and one negative. ÷¢

| Simplify.<br>1. $\sqrt{16}$   | 2. √64<br>8       | <b>3.</b> √225  |
|-------------------------------|-------------------|-----------------|
| <b>4</b> . $\sqrt{2025}$      | <b>5.</b> √57,600 | <b>6</b> .√36   |
| <b>7</b> .√400                | <b>8</b> .√4      | <b>9.</b> √3600 |
| $-\sqrt{121}$<br>$+\sqrt{50}$ |                   |                 |

Determine whether the function represents *exponential growth* or *exponential decay*. Identify the percent rate of change.

**1.**  $y = 5(0.7)^t$  **2.**  $y = 49(1.04)^t$ 

**3.**  $r(t) = 0.5(0.95)^t$ 

**4.** 
$$g(t) = 3\left(\frac{4}{5}\right)$$



## G Core Concept

## **Differences and Ratios of Functions**

You can use patterns between consecutive data pairs to determine which type of function models the data. The differences of consecutive y-values are called *first differences*. The differences of consecutive first differences are called *second differences*.

- Linear Function The first differences are constant.
- Exponential Function Consecutive y-values have a common ratio.
- Quadratic Function The second differences are constant.

In all cases, the differences of consecutive *x*-values need to be constant.

Tell whether each table of values represents a *linear*, an *exponential*, or a *quadratic* function.

| a.          | x | -3 | -2 | -1 | 0 | 1  |
|-------------|---|----|----|----|---|----|
|             | у | 11 | 8  | 5  | 2 | -1 |
|             |   |    |    |    |   |    |
|             |   |    |    |    |   |    |
|             |   |    |    |    |   |    |
| b.          | x | -2 | -1 | 0  | 1 | 2  |
|             | у | 1  | 2  | 4  | 8 | 16 |
|             |   | -  | -  |    |   | -  |
|             |   |    |    |    |   |    |
|             |   |    |    |    |   |    |
| <b>c.</b> ] | x | -2 | -1 | 0  | 1 | 2  |
|             |   |    | I  |    |   |    |

| G Core Concept                                                                                   |
|--------------------------------------------------------------------------------------------------|
| Product Property of Square Roots                                                                 |
| <b>Words</b> The square root of a product equals the product of the square roots of the factors. |
| Numbers $\sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5}$                                 |
| Algebra $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$ , where $a, b \ge 0$                               |
| The radical                                                                                      |
| V Rule 1: make the radicand as                                                                   |
| small as possible. (no square                                                                    |
| ( the fraters)                                                                                   |
| radicand Rule 2: no fractions in the                                                             |
| radicand.                                                                                        |
| Rule 3: no radicals in the                                                                       |
| denominator.                                                                                     |
|                                                                                                  |

Г



Simplify the expression. **3.**  $\sqrt{49x^3}$ **4**. $\sqrt{75n^5}$ **1.**  $\sqrt{24}$ **2**.  $-\sqrt{80}$ 20.4 6.4 1x3 9. 16 1.5  $|\mathcal{X}|$ 15 simplest radical form .1

0











The ratio of the length to the width of a *golden rectangle* is  $(1+\sqrt{5})$ : 2. The dimensions of the face of the Parthenon in Greece form a golden rectangle. What is the height *h* of the Parthenon?





Simplify  $\sqrt{5} - 5\sqrt{13} - 8\sqrt{5}$ 

