Algebra 1

Our Goal: To learn to solve polynomial equations

 in factored form slopeWarm Up: Average rate of change of a function
Today's homework

- 7.4 Exercises, p.381-382: 4-40 (evens)
- iready, if needed

Previous homework

7.3 Exercises, p.375-376: 4-36 (evens)

Select from the drop-down menus to correctly complete the sentence.

$$
\begin{aligned}
& (-12-n)^{2} \\
& (-12)^{2}-2(-12)(n)+(-n)^{2} \\
& 144+24 n+n^{2}
\end{aligned}
$$

$$
\begin{gathered}
(30+3)(30-3) \\
3.3 \cdot 27 \\
30^{2}-3^{2} \\
900-9 \\
991
\end{gathered}
$$

February 6, 2024

$$
\begin{aligned}
& (x+3)-(x-7)^{2} \\
& (x+3)-\left(x^{2}-14 x+49\right) \\
& x+3-x^{2}+14 x-49
\end{aligned}
$$

$$
\begin{aligned}
& (x-7)^{2} \neq x^{2}+49 \\
& (x-7)(x-7)
\end{aligned}
$$

$$
\begin{aligned}
& (-12-n)^{2}=(n+12)^{2} \\
& (-(12+n))^{2}=(-1)^{2}(12+n)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& (x+3)(x+4) \\
& x^{2}+7 x+12
\end{aligned}
$$

$$
ـ_{\square}=0
$$

$$
\begin{aligned}
& 1 \times 0=0 \\
& 7 \times 0=0 \\
& 0 \times 0=0
\end{aligned}
$$

Core Concept

Zero-Product Property
Words If the product of two real numbers is 0 , then at least one of the numbers is 0 .

Algebra If a and b are real numbers and $a b=0$, then $a=0$ or $b=0$.

Solve each equation.
a. $2 x(x-4)=0$
b. $(x-3)(x-9)=0$

Solve the equation. Check your solutions.

$$
\begin{gathered}
7,10,3,-2 \\
(x-7)(x-10)(x-3)(x+2)=0
\end{gathered}
$$

Solve the equation. Check your solutions.
4. $(3 s+5)(5 s+8)=0$
5. $(b+7)^{2}=0$
6. $(d-2)(d+6)(d+8)=0$

Factor out the greatest common monomial factor from $4 x^{4}+24 x^{3}$.

February 6, 2024
7. Factor out the greatest common monomial factor from $8 y^{2}-24 y$.

Solve
a. $2 x^{2}+8 x=0$
b. $6 n^{2}=15 n$

Solve the equation. Check your solutions.
8. $a^{2}+5 a=0$
9. $3 s^{2}-9 s=0$
10. $4 x^{2}=2 x$

You can model the arch of a fireplace using the equation $y=-\frac{1}{9}(x+18)(x-18)$, where x and y are measured in inches. The x-axis represents the floor. Find the width of the arch at floor level.
11. You can model the entrance to a mine shaft using the equation $y=-\frac{1}{2}(x+4)(x-4)$, where x and y are measured in feet. The x-axis represents the ground. Find the width of the entrance at ground level.

