Algebra 1

Our Goal: To learn to square a binomial

Warm Up: Writing absolute value equations

Today's homework

7.3 Exercises, p.375-376: 4-36 (evens)

Previous homework

7.2 Exercises, p.369-370: 4-44 (evens)

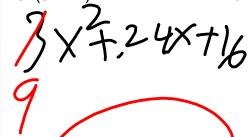
$$(5d-12)(-7+3d)$$

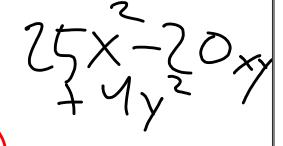
 $(5d-12)(3d-7)$
 $15d^2-71d+84$
 $0+I$
 $-35d-36d$

Write an absolute value equation that has the given solutions.

1.
$$x = 9$$
 and $x = 17$ **2.** $x = 3$ and $x = 8$

3.
$$x = 5$$
 and $x = 16$. 4. $x = -3$ and $x = 10$


Square of a Binomial Pattern
Algebra


$$(a + b)^2 = a^2 + 2ab + b^2$$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a - b)^2 = a^2 - 2ab + b^2$
 $(a - b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab + b^2$
 $(a + b)^2 = a^2 - 2ab$

Find each product.

a. $(3x + 4)^2$

b. $(5x - 2y)^2$

3x+4/3x+4

12x+12x

Find the product.

1.
$$(x + 7)^2$$

2.
$$(7x - 3)^2$$

3.
$$(4x - y)^2$$

4.
$$(3m + n)^2$$

Sum and Difference Pattern

Algebra

Example

$$(a+b)(a-b) = a^2 - b^2 (x+3)(x-3) = x^2 - 9$$

$$(x+3)(x-3) = x^2 - 9$$

Find each product.

a.
$$(t + 5)(t - 5)$$

b.
$$(3x + y)(3x - y)$$

$$3x^2-y^2$$
 $9x^2-y^2$

Use special product patterns to find the product $26 \cdot 34$. $30 - 4 \quad (30 - 4) \quad (30 + 4) \quad (30 - 4) \quad (30$

Find the product.

5.
$$(x + 10)(x - 10)$$

6.
$$(2x + 1)(2x - 1)$$

5.
$$(x + 10)(x - 10)$$
 6. $(2x + 1)(2x - 1)$ **7.** $(x + 3y)(x - 3y)$

8. Describe how to use special product patterns to find 21².