

$$f(x) = (4x^{2}-5)$$

$$g(x) = f(x) + 7$$

$$g(x) = (4x^{2}-5+7)$$

$$g(x)$$

Complete the exercise.

1. Does (4, 3) satisfy the equation $y = 3x^2 - x + 7$?

2. Does (0, -1) satisfy the equation
$$y = -2x^2 + \frac{1}{2}x - 1$$
?

3. Does (5, 0) satisfy the equation $y = 4x^2 - 2x + 4$?

4. Does (-1, -9) satisfy the equation $y = -2x^2 + 3x - 4$?

Work with a partner.

a. Sketch the graphs of $y = 2x^2 - 8x$ and $y = 2x^2 - 8x + 6$.

b. What do you notice about the *x*-coordinate of the vertex of each graph?

c. Use the graph of $y = 2x^2 - 8x$ to find its *x*-intercepts. Verify your answer by solving $0 = 2x^2 - 8x$.

d. Compare the value of the *x*-coordinate of the vertex with the values of the *x*-intercepts.

Work with a partner.

a. Solve $0 = ax^2 + bx$ for x by factoring.

b. What are the *x*-intercepts of the graph of $y = ax^2 + bx$?

c. Copy and complete the table to verify your answer.

x	$y = ax^2 + bx$
0	
$-\frac{b}{a}$	

Find (a) the axis of symmetry and (b) the vertex of the graph of the function. **2.** $g(x) = x^2 + 6x + 5$ 1. $f(x) = 3x^2 - 2x$ a=3 b=-2 • $\frac{1}{3. h(x) = -\frac{1}{2}x^2 + 7x}$ 6 2(3 24 $t(1_{5})=3(1_{3})^{2}-2\cdot 1_{3}$ $f(x=V_5^{-2}x)$ $f(x_5)=-1/3$ $V:\left(\frac{1}{3}, -\frac{1}{3}\right)$ $2eros f(x) = 3x^{2} - 2x$ $0 = 3x^{2} - 2x$ 0 = x(3x - 2) $-0, = \frac{2}{3}$

$$\begin{array}{c} h(x) = -\frac{1}{2}x^{2} + 7x - 4 \\ (-\frac{b}{2a}, 2x^{2} + 7x - 4 \\ (-\frac{b}{2a}, 2x^{2}, 3x - 7 \\ (-\frac{7}{2(\frac{1}{2})}, 3x - 7 \\ (-\frac{7}{2(\frac{1}{2})}, 3x - 7 \\ (-\frac{1}{2(\frac{1}{2})}, 3x - 7 \\ (-\frac{$$

Graph $f(x) = 3x^2 - 6x + 5$. Describe the domain and range.

Tell whether the function $f(x) = -4x^2 - 24x - 19$ has a minimum value or a maximum value. Then find the value.

Tell whether the function has a minimum value or a maximum value. Then find the value.

7. $g(x) = 8x^2 - 8x + 6$

8.
$$h(x) = -\frac{1}{4}x^2 + 3x + 1$$

9. The cables between the two towers of the Tacoma Narrows Bridge in Washington form a parabola that can be modeled by

 $y = 0.00016x^2 - 0.46x + 507$, where x and y are measured in feet. What is the height of the cable above the water at its lowest point?

A group of friends is launching water balloons. The function $f(t) = -16t^2 + 80t + 5$ represents the height (in feet) of the first water balloon *t* seconds after it is launched. The height of the second water balloon *t* seconds after it is launched is shown in the graph. Which water balloon went higher?

10. Which balloon is in the air longer? Explain your reasoning.

11. Which balloon reaches its maximum height faster? Explain your reasoning.

Write an equation of a quadratic function that opens up, has a negative *y*-intercept, and is wider than the graph of $y = x^2$.