Algebra 1

Our Goal: To learn to graph quadratic functions of the form $f(x)=a x^{2}+c$

Warm Up: Intercepts review

Today's Homework
8.2 Exercises, p.429: 4-28 (evens)
use the TI-84 for graphing (graph paper online, if needed)

Previous Homework

- 8.1 Exercises, p.423-424: 4-28 (multiples of 4)
use the TI-84 for graphing (graph paper online, if needed)
- Correct any test mistakes on a separate sheet of paper for partial credit

Find the x - and y-intercepts.
N
2. $y=x-11$
(3. $y=2 x-13$
$x-i n t: 6 / 2$ y yox- 13
5. $6 x-y=12$
4. $2 x-5 y=-1$
$x=-\frac{1}{2}$
$y=\frac{1}{5}$
6. $y=\frac{1}{6} x+3$

Essential Question
How does the value of c affect the graph of $f(x)=a x^{2}+c$?

$$
y=|x|+3
$$

Work with a partner. Sketch the graphs of the functions in the same coordinate plane. What do you notice?
a. $f(x)=x^{2}$ and $g(x)=x^{2}+2$

9

b. $f(x)=2 x^{2}$ and $g(x)=2 x^{2}-2$

Work with a partner. Graph each function. Find the x-intercepts of the graph. Explain how you found the x-intercepts.
a. $y=x^{2}-7$
b. $y=-x^{2}+1$

Core Concept

Graphing $f(x)=a x^{2}+c$

- When $c>0$, the graph of $f(x)=a x^{2}+c$ is a vertical translation c units up of the graph of $f(x)=a x^{2}$.
- When $c<0$, the graph of $f(x)=a x^{2}+c$ is a vertical translation $|c|$ units down of the graph of $f(x)=a x^{2}$.
The vertex of the graph of $f(x)=a x^{2}+c$ is $(0, c)$, and the axis of symmetry is $x=0$.

Graph $g(x)=x^{2}-2$. Compare the graph to the graph of $f(x)=x^{2}$.

Graph the function. Compare the graph to the graph of $f(x)=x^{2}$.
$\begin{array}{ll}\text { 1. } g(x)=x^{2}-5 & \text { 2. } h(x)=x^{2}+3\end{array}$

Graph $g(x)=4 x^{2}+1$. Compare the graph to the graph of $f(x)=x^{2}$.

Let $f(x)=-0.5 x^{2}+2$ and $g(x)=f(x)-7$.
a. Describe the transformation from the graph of f to the graph of g. Then graph f and g in the same coordinate plane.
b. Write an equation that represents g in terms of x.

Graph the function. Compare the graph to the graph of $f(x)=x^{2}$.

3. $g(x)=2 x^{2}-5$
4. $h(x)=-\frac{1}{4} x^{2}+4$
5. Let $f(x)=3 x^{2}-1$ and $g(x)=f(x)+3$.
a. Describe the transformation from the graph of f to the graph of g. Then graph f and g in the same coordinate plane.
b. Write an equation that represents g in terms of x.

The function $f(t)=-16 t^{2}+s_{0}$ represents the approximate height (in feet) of a falling object t seconds after it is dropped from an initial height s_{0} (in feet). An egg is dropped from a height of 64 feet.
a. After how many seconds does the egg hit the ground?
b. Suppose the initial height is adjusted by k feet. How will this affect part (a)?
6. Explain why only nonnegative values of t are used in Example 4.
7. WHAT IF? The egg is dropped from a height of 100 feet. After how many seconds does the egg hit the ground?

Writing Prompt: The graph of $y=-4 x^{2}+12$ is \ldots

