

G Core Concept

Characteristics of Quadratic Functions

The *parent quadratic function* is $f(x) = x^2$. The graphs of all other quadratic functions are *transformations* of the graph of the parent quadratic function.

The lowest point on a parabola that opens up or the highest point on a parabola that opens down is the **vertex**. The vertex of the graph of $f(x) = x^2$ is (0, 0).

The vertical line that divides the parabola into two symmetric parts is the **axis of symmetry**. The axis of symmetry passes through the vertex. For the graph of $f(x) = x^2$, the axis of symmetry is the *y*-axis, or x = 0.

Graph
$$h(x) = -\frac{1}{3}x^2$$
. Compare the graph to the graph of $f(x) = x^2$.

Graph the function. Compare the graph to the graph of $f(x) = x^2$. 3. $g(x) = 5x^2$ 4. $h(x) = \frac{1}{3}x^2$ 5. $n(x) = \frac{3}{2}x^2$ 6. $p(x) = -3x^2$ 7. $q(x) = -0.1x^2$ 8. $g(x) = -\frac{1}{4}x^2$

The diagram at the left shows the cross section of a satellite dish, where x and y are measured in meters. Find the width and depth of the dish.

9. The cross section of a spotlight can be modeled by the graph of $y = 0.5x^2$, where *x* and *y* are measured in inches and $-2 \le x \le 2$. Find the width and depth of the spotlight.

• Exit Ticket: Describe the differences between the graphs of $y = -3x^2$ and $y = \frac{1}{3}x^2$.