Algebra 1
Our Goal: To learn to multiply binomials
Warm Up: Linear and exponential function review
Today's homework
7.2 Exercises, p.369-370: 4-44 (evens)

Previous homework

- 7.1 Exercises, p.362-363: 6-46 (evens)
- Correct any test mistakes on a separate sheet of paper for partial credit

February 2,2024

$$
\begin{aligned}
& \sqrt{7} \cdot n^{4} \\
& 7^{\frac{1}{2}} \cdot n^{4}
\end{aligned}
$$

$$
\begin{aligned}
& 400 x^{8}+600 x^{6} \\
& \text { degrece hinomial }=8
\end{aligned}
$$

Determine whether the table represents a linear or an exponential function. Explain.
1.

x	2	3	4	5	6
y	-3	-2	-1	0	1

2.

x	0	1	2	3	4
y	0.125	1	8	64	512

 FOIL Method \qquad First terms, Outer terms,
\qquad
\qquad $\begin{array}{ll}\text { Inner terms, and } & \left(x+\overparen{1)(x+2)} \quad \longrightarrow \quad \begin{array}{l}x(2)=2 \\ 1(x)=x\end{array}\right.\end{array}$ Last terms. \qquad

$$
\begin{array}{cccc}
F & O & I & F \\
F & O & I \\
x^{2}+5 x+2 x+10 & 2 x^{2} 10 x & -3 x \\
x^{2}+7 x+10 & 2 x^{2}+7 x-15
\end{array}
$$

Use the FOIL method to find the product.

1. $(y+4)(y+1)$
2. $(z-2)(z+6)$

$$
y^{2}+5 y+4
$$

$$
2+4 z-12
$$

3. $(p+3)(p-8)$
4. $(r-5)(2 r-1)$

$$
p^{2}-5 p-24
$$

$$
2 r^{2}-11 r+5
$$

Use the FOIL Method to find the product.
5. $(m-3)(m-7)$
6. $(x-4)(x+2)$
7. $\left(2 u+\frac{1}{2}\right)\left(u-\frac{3}{2}\right)$

$0+\frac{1}{2}$

In hockey, a goalie behind the goal line can only play a puck in the trapezoidal region
a. Write a polynomial that represents the area of the trapezoidal region.
b. Find the area of the trapezoidal region when the shorter base is 18 feet.

9. $(x+1)\left(x^{2}+5 x+8\right)$

$$
\begin{gathered}
x^{3}+6 x^{2}+13 x+8 n^{3}-5 n^{2}+104 \\
-12
\end{gathered}
$$

$$
(x+3)^{2}=\frac{(x+3)(x+3)}{\frac{x^{2}+3 x+3 x+9}{x^{2}+6 x+9}}
$$

$$
\begin{aligned}
& (2+3)^{2} \neq 4+9 \\
& 5^{2} \\
& 25
\end{aligned}
$$

