Algebra 1

Our Goal: To learn how to factor $x^{2}+b x+c$

Warm Up: Quiz discussion

Today's Homework

- 7.5 Exercises, p.389: 4-38 (evens)
- iready due Friday, why wait?

Previous Homework None (HFZ)

Determine whether the equation represents a linear or nonlinear function. Explain.

1. $y=x^{2}-14$
2. $y=\sqrt{8}+x$

Factor $x^{2}+10 x$

$$
x(x+10)
$$

Core Concept

Factoring $\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ When \boldsymbol{c} Is Positive
Algebra $\quad x^{2}+b x+c=(x+p)(x+q)$ when $p+q=b$ and $p q=c$.
When c is positive, p and q have the same sign as b.
Examples $x^{2}+6 x+5=(x+1)(x+5)$

$$
x^{2}-6 x+5=(x-1)(x-5)
$$

$(x+8)(x+2))$	
$\frac{F}{x^{2}}$	$\frac{L}{16}$
	6,1
	4,4

$$
\begin{aligned}
& (x+6)(x+1) \\
& (x+8)(x+1)
\end{aligned}
$$

Factor $x^{2}-8 x+12$.

$$
\begin{aligned}
& \text { prod }=12 \\
& \text { sum }=-8
\end{aligned}
$$

G) Core Concept

Factoring $\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ When \boldsymbol{c} Is Negative
Algebra $x^{2}+b x+c=(x+p)(x+q)$ when $p+q=b$ and $p q=c$. When c is negative, p and q have different signs.
Example $x^{2}-4 x-5=(x+1)(x-5)$

Factor $x^{2}+4 x-21$.

Factor the polynomial.
3. $w^{2}-4 w+3$
4. $n^{2}-12 n+35$
$(w-3)(w-1)(n-7)(n-5)$
5. $x^{2}-14 x+24 \quad$ 6. $x^{2}+2 x-15$
$(x-12)(x-2)(x-3(x+5)$
7. $y^{2}+13 y-30$
8. $v^{2}-f v-42$

$$
(y-2)(y+15)-(v-7)(v+6)
$$

$$
\begin{aligned}
& x^{2}+6 x+9 \\
& (x+3)(x+3) \leftarrow \\
& \left.(x+3)^{2}\right) \text { better }
\end{aligned}
$$

$$
\left.\frac{\left(x^{2}+4 x+6\right.}{(x+)(x+}\right)
$$

prime

February 12, 2024

