Algebra 1

Our Goal: To learn to add and subtract polynomials
Warm Up: paper folding
Today's homework

- 7.1 Exercises, p.362-363: 6-46 (evens)

Previous homework

- Correct any test mistakes on a separate sheet of paper for partial credit

$$
\begin{aligned}
& \frac{\left(-3 x^{2}\right)^{3}}{\left(-3 x^{6}\right)^{3}} \\
& -3^{3} x^{6} \\
& -27 x^{6}
\end{aligned}
$$

The degree of a monomial is the sum of the exponents on the variables only Find the degree of each monomial. a. polynomial is an expression whose variables are raised to whole \#'s.

Find the degree of the monomial.

1. $-3 x^{4}$
2. $7 c^{3} d^{2}$
3. $\frac{5}{3} y^{\prime}$
4. $-20.5 x^{0}$

monomial is the sum
of the exponents on The variables

Core Concept
Polynomials
A polynomial is a monomial or a sum of monomials. Each monomial is called a term of the polynomial. A polynomial with two terms is a binomial. A polynomial with three terms is a trinomial.

Binomial
Trinomial

$$
5 x+2
$$

$$
x^{2}+5 x+2
$$

The degree of a polynomial is the greatest degree of its terms. A polynomial in one variable is in standard form when the exponents of the terms decrease from left to right. When you write a polynomial in standard form, the coefficient of the first term is the leading coefficient.

Write $15 x-x^{3}+3$ in standard form. Identify the degree and leading coefficient of the polynomial.

$$
-x^{3}+15 x+3
$$

$$
x^{3}+2 x^{3}
$$

Write each polynomial in standard form. Identify the degree and classify each polynomial by the number of terms.
a. $-3 z^{4}$
b. $4+5 x^{2}-x$
c. $8 q+q^{5}$

trinomial

Write the polynomial in standard form. Identify the degree and leading coefficient of the polynomial. Then classify the polynomial by the number of terms.
5. $4-9 z$
6. $t^{2}-t^{3}-10 t$
7. $2.8 x+x^{3}$
to add polynomials is to
Find the sum. Combine like terms
a. $\left(2 x^{3}-5 x^{2}+x\right)+\left(2 x^{2}+x^{3}-1\right)$
b. $\left(3 x^{2}+x-6\right)+\left(x^{2}+4 x+10\right)$
$3 x^{3}-3 x^{2}+x-1$
$4 x^{2}+5 x+4$

Sind the difference. opposite is adding she
a. $\left(4 n^{2}+5\right)-\left(-2 n^{2}+2 n-4\right)$
$\left(4 n^{2}+5\right)+\left(2 n^{2}-2 n+4\right)$
$6 n^{2}-2 n+9$
b. $\left(4 x^{2}-3 x+5\right)-\left(3 x^{2}-x-8\right)$
$\left(4 x^{2}-3 x+5\right)+\left(-3 x^{2}+x+8\right)$

$$
x^{2}-2 x+13
$$

Find the sum or difference.
8. $(b-10)+(4 b-3)$
9. $\left(x^{2}-x-2\right)+\left(7 x^{2}-x\right)$
10. $\left(p^{2}+p+3\right)-\left(-4 p^{2}-p+3\right)$
11. $(-k+5)-\left(3 k^{2}-6\right)$

A penny is thrown straight down from a height of 200 feet. At the same time, a paintbrush is dropped from a height of 100 feet. The polynomials represent the heights (in feet) of the objects after t seconds.

Not drawn to scale
a. Write a polynomial that represents the distance between the penny and the paintbrush after t seconds.
b. Interpret the coefficients of the polynomial in part (a).

